Portrait de Irina Rish

Irina Rish

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage en ligne
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Neurosciences computationnelles
Traitement du langage naturel

Biographie

Irina Rish est professeure titulaire à l'Université de Montréal (UdeM), où elle dirige le Laboratoire d'IA autonome. Membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, elle est titulaire d'une chaire d'excellence en recherche du Canada (CERC) et d'une chaire en IA Canada-CIFAR. Irina dirige le projet INCITE du ministère américain de l'Environnement au sujet des modèles de fondation évolutifs sur les superordinateurs Summit et Frontier à l'Oak Ridge Leadership Computing Facility (OLCF). Elle est cofondatrice et directrice scientifique de Nolano.ai.

Ses recherches actuelles portent sur les lois de mise à l'échelle neuronale et les comportements émergents (capacités et alignement) dans les modèles de fondation, ainsi que sur l'apprentissage continu, la généralisation hors distribution et la robustesse. Avant de se joindre à l'UdeM en 2019, Irina était chercheuse au Centre de recherche IBM Thomas J. Watson, où elle a travaillé sur divers projets à l'intersection des neurosciences et de l'IA, et dirigé le défi NeuroAI. Elle a reçu plusieurs prix IBM : ceux de l’excellence et de l’innovation exceptionnelle (2018), celui de la réalisation technique exceptionnelle (2017), et celui de l’accomplissement en recherche (2009). Elle détient 64 brevets et a écrit plus de 120 articles de recherche, plusieurs chapitres de livres, trois livres publiés et une monographie sur la modélisation éparse.

Étudiants actuels

Visiteur de recherche indépendant - UdeM
Co-superviseur⋅e :
Stagiaire de recherche
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :

Publications

Cognitive Models as Simulators: Using Cognitive Models to Tap into Implicit Human Feedback
Ardavan S. Nobandegani
Thomas Shultz
Continual Pre-Training of Large Language Models: How to (re)warm your model?
Kshitij Gupta
Benjamin Thérien
Adam Ibrahim
Mats Leon Richter
Quentin Gregory Anthony
Timothee LESORT
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes a… (voir plus)vailable. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratch
Towards Out-of-Distribution Adversarial Robustness
Adam Ibrahim
Charles Guille-Escuret
Adversarial robustness continues to be a major challenge for deep learning. A core issue is that robustness to one type of attack often fail… (voir plus)s to transfer to other attacks. While prior work establishes a theoretical trade-off in robustness against different
Dialogue System with Missing Observation
Djallel Bouneffouf
Mayank Agarwal
Within the domain of dialogue, the ability to orchestrate multiple independently trained dialogue agents to create a unified system is of pa… (voir plus)rticular importance. Where we define orchestration as the task of selecting a subset of skills which most appropriately answer a user input using features extracted from both the user input and the individual skills. In this work, we study the task of online dialogue orchestration where the user feedback associated with the dialogue agent may not always be observed. In order to address the missing feedback setting, we propose to combine the attentive contextual bandit approach with an unsupervised learning mechanism such as clustering. By leveraging clustering to estimate missing reward, we are able to learn from each incoming event, even those with missing rewards. Promising empirical results are obtained on proprietary conversational datasets.
Estimating individual minimum calibration for deep-learning with predictive performance recovery: An example case of gait surface classification from wearable sensor gait data.
Guillaume Lam
P. Dixon
Towards ethical multimodal systems
Alexis Roger
Esma Aimeur
A Survey on Compositional Generalization in Applications
Baihan Lin
Djallel Bouneffouf
Broken Neural Scaling Laws
Ethan Caballero
Kshitij Gupta
We present a smoothly broken power law functional form (that we refer to as a Broken Neural Scaling Law (BNSL)) that accurately models&extra… (voir plus)polates the scaling behaviors of deep neural networks (i.e. how the evaluation metric of interest varies as amount of compute used for training (or inference), number of model parameters, training dataset size, model input size, number of training steps, or upstream performance varies) for various architectures&for each of various tasks within a large&diverse set of upstream&downstream tasks, in zero-shot, prompted,&finetuned settings. This set includes large-scale vision, language, audio, video, diffusion, generative modeling, multimodal learning, contrastive learning, AI alignment, AI capabilities, robotics, out-of-distribution (OOD) generalization, continual learning, transfer learning, uncertainty estimation / calibration, OOD detection, adversarial robustness, distillation, sparsity, retrieval, quantization, pruning, fairness, molecules, computer programming/coding, math word problems,"emergent phase transitions", arithmetic, supervised learning, unsupervised/self-supervised learning,&reinforcement learning (single agent&multi-agent). When compared to other functional forms for neural scaling, this functional form yields extrapolations of scaling behavior that are considerably more accurate on this set. Moreover, this functional form accurately models&extrapolates scaling behavior that other functional forms are incapable of expressing such as the nonmonotonic transitions present in the scaling behavior of phenomena such as double descent&the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Lastly, we use this functional form to glean insights about the limit of the predictability of scaling behavior. Code is available at https://github.com/ethancaballero/broken_neural_scaling_laws
AI Agents Learn to Trust
Ardavan S. Nobandegani
T. Shultz
GOKU-UI: Ubiquitous Inference through Attention and Multiple Shooting for Continuous-time Generative Models
Germán Abrevaya
Mahta Ramezanian-Panahi
Jean-Christophe Gagnon-Audet
Pablo Polosecki
Silvina Ponce Dawson
Guillermo Cecchi
Scientific Machine Learning (SciML) is a burgeoning field that synergistically combines domain-aware and interpretable models with agnosti… (voir plus)c machine learning techniques. In this work, we introduce GOKU-UI, an evolution of the SciML generative model GOKU-nets. The GOKU-UI broadens the original model’s spectrum to incorporate other classes of differential equations, such as Stochastic Differential Equations (SDEs), and integrates a distributed, i.e. ubiquitous, inference through attention mechanisms and a novel multiple shooting training strategy in the latent space. These enhancements have led to a significant increase in its performance in both reconstruction and forecast tasks, as demonstrated by our evaluation of simulated and empirical data. Specifically, GOKU-UI outperformed all baseline models on synthetic datasets even with a training set 32-fold smaller, underscoring its remarkable data efficiency. Furthermore, when applied to empirical human brain data, while incorporating stochastic Stuart-Landau
Gradient Masked Averaging for Federated Learning
Irene Tenison
Sai Aravind Sreeramadas
Vaikkunth Mugunthan
Edouard Oyallon
Federated learning (FL) is an emerging paradigm that permits a large number of clients with heterogeneous data to coordinate learning of a u… (voir plus)nified global model without the need to share data amongst each other. A major challenge in federated learning is the heterogeneity of data across client, which can degrade the performance of standard FL algorithms. Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server. However, we argue that in heterogeneous settings, averaging can result in information loss and lead to poor generalization due to the bias induced by dominant client gradients. We hypothesize that to generalize better across non-i.i.d datasets, the algorithms should focus on learning the invariant mechanism that is constant while ignoring spurious mechanisms that differ across clients. Inspired from recent works in Out-of-Distribution generalization, we propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates. This aggregation technique for client updates can be adapted as a drop-in replacement in most existing federated algorithms. We perform extensive experiments on multiple FL algorithms with in-distribution, real-world, feature-skewed out-of-distribution, and quantity imbalanced datasets and show that it provides consistent improvements, particularly in the case of heterogeneous clients.
Lag-Llama: Towards Foundation Models for Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Biloš
Hena Ghonia
N. Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (voir plus)Llama , a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen “out-of-distribution” time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws [7] to fit and predict model scaling behavior. The open source code is made available at https://github