Portrait de Irina Rish

Irina Rish

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage en ligne
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Neurosciences computationnelles
Traitement du langage naturel

Biographie

Irina Rish est professeure titulaire à l'Université de Montréal (UdeM), où elle dirige le Laboratoire d'IA autonome. Membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, elle est titulaire d'une chaire d'excellence en recherche du Canada (CERC) et d'une chaire en IA Canada-CIFAR. Irina dirige le projet INCITE du ministère américain de l'Environnement au sujet des modèles de fondation évolutifs sur les superordinateurs Summit et Frontier à l'Oak Ridge Leadership Computing Facility (OLCF). Elle est cofondatrice et directrice scientifique de Nolano.ai.

Ses recherches actuelles portent sur les lois de mise à l'échelle neuronale et les comportements émergents (capacités et alignement) dans les modèles de fondation, ainsi que sur l'apprentissage continu, la généralisation hors distribution et la robustesse. Avant de se joindre à l'UdeM en 2019, Irina était chercheuse au Centre de recherche IBM Thomas J. Watson, où elle a travaillé sur divers projets à l'intersection des neurosciences et de l'IA, et dirigé le défi NeuroAI. Elle a reçu plusieurs prix IBM : ceux de l’excellence et de l’innovation exceptionnelle (2018), celui de la réalisation technique exceptionnelle (2017), et celui de l’accomplissement en recherche (2009). Elle détient 64 brevets et a écrit plus de 120 articles de recherche, plusieurs chapitres de livres, trois livres publiés et une monographie sur la modélisation éparse.

Étudiants actuels

Visiteur de recherche indépendant - UdeM
Co-superviseur⋅e :
Stagiaire de recherche
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :

Publications

Survey on Applications of Multi-Armed and Contextual Bandits
Djallel Bouneffouf
Charu Aggarwal
In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems a… (voir plus)nd information retrieval to healthcare and finance. This success is due to its stellar performance combined with attractive properties, such as learning from less feedback. The multiarmed bandit field is currently experiencing a renaissance, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This article aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize the state-of-the-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this burgeoning field.
Chaotic Continual Learning
Touraj Laleh
Mojtaba Faramarzi
Training a deep neural network requires the model to go over training data for several epochs and update network parameters. In continual le… (voir plus)arning, this process results in catastrophic forgetting which is one of the core issues of this domain. Most proposed approaches for this issue try to compensate for the effects of parameter updates in the batch incremental setup in which the training model visits a lot of samples for several epochs. However, it is not realistic to expect training data will always be fed to model in a batch incremental setup. This paper proposes a chaotic stream learner that mimics the chaotic behavior of biological neurons and does not updates network parameters. In addition, it can work with fewer samples compared to deep learning models on stream learning setup. Our experiments on MNIST, CIFAR10, and Omniglot show that the chaotic stream learner has less catastrophic forgetting by its nature in comparison to a CNN model in continual learning.
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
abhinav sharma
Brooke Struck … (voir 3 de plus)
Martin Weiss
Yun William Yu
An Empirical Study of Human Behavioral Agents in Bandits, Contextual Bandits and Reinforcement Learning.
Baihan Lin
Guillermo Cecchi
Djallel Bouneffouf
Jenna Reinen
Artificial behavioral agents are often evaluated based on their consistent behaviors and performance to take sequential actions in an enviro… (voir plus)nment to maximize some notion of cumulative reward. However, human decision making in real life usually involves different strategies and behavioral trajectories that lead to the same empirical outcome. Motivated by clinical literature of a wide range of neurological and psychiatric disorders, we propose here a more general and flexible parametric framework for sequential decision making that involves a two-stream reward processing mechanism. We demonstrated that this framework is flexible and unified enough to incorporate a family of problems spanning multi-armed bandits (MAB), contextual bandits (CB) and reinforcement learning (RL), which decompose the sequential decision making process in different levels. Inspired by the known reward processing abnormalities of many mental disorders, our clinically-inspired agents demonstrated interesting behavioral trajectories and comparable performance on simulated tasks with particular reward distributions, a real-world dataset capturing human decision-making in gambling tasks, and the PacMan game across different reward stationarities in a lifelong learning setting.
Unified Models of Human Behavioral Agents in Bandits, Contextual Bandits and RL
Baihan Lin
Guillermo Cecchi
Djallel Bouneffouf
Jenna Reinen
Modeling Dialogues with Hashcode Representations: A Nonparametric Approach
Sahil Garg
Guillermo Cecchi
Palash Goyal
Shuyang Gao
Sarik Ghazarian
Greg Ver Steeg
Aram Galstyan
We propose a novel dialogue modeling framework, the first-ever nonparametric kernel functions based approach for dialogue modeling, which le… (voir plus)arns hashcodes as text representations; unlike traditional deep learning models, it handles well relatively small datasets, while also scaling to large ones. We also derive a novel lower bound on mutual information, used as a model-selection criterion favoring representations with better alignment between the utterances of participants in a collaborative dialogue setting, as well as higher predictability of the generated responses. As demonstrated on three real-life datasets, including prominently psychotherapy sessions, the proposed approach significantly outperforms several state-of-art neural network based dialogue systems, both in terms of computational efficiency, reducing training time from days or weeks to hours, and the response quality, achieving an order of magnitude improvement over competitors in frequency of being chosen as the best model by human evaluators.
Towards Lifelong Self-Supervision For Unpaired Image-to-Image Translation
Victor Schmidt
Makesh Narsimhan Sreedhar
Mostafa ElAraby
Unpaired Image-to-Image Translation (I2IT) tasks often suffer from lack of data, a problem which self-supervised learning (SSL) has recently… (voir plus) been very popular and successful at tackling. Leveraging auxiliary tasks such as rotation prediction or generative colorization, SSL can produce better and more robust representations in a low data regime. Training such tasks along an I2IT task is however computationally intractable as model size and the number of task grow. On the other hand, learning sequentially could incur catastrophic forgetting of previously learned tasks. To alleviate this, we introduce Lifelong Self-Supervision (LiSS) as a way to pre-train an I2IT model (e.g., CycleGAN) on a set of self-supervised auxiliary tasks. By keeping an exponential moving average of past encoders and distilling the accumulated knowledge, we are able to maintain the network's validation performance on a number of tasks without any form of replay, parameter isolation or retraining techniques typically used in continual learning. We show that models trained with LiSS perform better on past tasks, while also being more robust than the CycleGAN baseline to color bias and entity entanglement (when two entities are very close).
Online Fast Adaptation and Knowledge Accumulation: a New Approach to Continual Learning
Massimo Caccia
Pau Rodriguez
Oleksiy Ostapenko
Fabrice Normandin
Min Lin
Lucas Caccia
Issam Hadj Laradji
Alexande Lacoste
David Vazquez
Resting-state connectivity stratifies premanifest Huntington’s disease by longitudinal cognitive decline rate
Pablo Polosecki
Eduardo Castro
Dorian Pustina
John H. Warner
Andrew Wood
Cristina Sampaio
Guillermo Cecchi
COVI White Paper-Version 1.1
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
abhinav sharma
Brooke Struck … (voir 3 de plus)
Martin Weiss
Yun William Yu
The SARS-CoV-2 (Covid-19) pandemic has resulted in significant strain on health care and public health institutions around the world. Contac… (voir plus)t tracing is an essential tool for public health officials and local communities to change the course of the Covid-19 pandemic. Standard manual contact tracing of people infected with Covid-19, while the current gold standard, has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile applications has the potential to shift the paradigm of Covid-19 community spread. Although some countries have deployed centralized tracking systems through either GPS or Bluetooth, more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or in for-profit corporations. Additionally, machine learning methods can be used to circumvent some of the limitations of standard digital tracing by incorporating many clues (including medical conditions, self-reported symptoms, and numerous encounters with people at different risk levels, for different durations and distances) and their uncertainty into a more graded and precise estimation of infection and contagion risk. The estimated risk can be used to provide early risk awareness, personalized recommendations and relevant information to the user and connect them to health services. Finally, the non-identifying data about these risks can inform detailed epidemiological models trained jointly with the machine learning predictor, and these models can provide statistical evidence for the interaction and importance of different factors involved in the transmission of the disease. They can also be used to monitor, evaluate and optimize different health policy and confinement/deconfinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of ‘COVI,’ a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada. Addendum 2020-07-14: The government of Canada has declined to endorse COVI and will be promoting a different app for decentralized contact tracing. In the interest of preventing fragmentation of the app landscape, COVI will therefore not be deployed to end users. We are currently still in the process of finalizing the project, and plan to release our code and models for academic consumption and to make them accessible to other States should they wish to deploy an app based on or inspired by said code and models. University of Ottawa, Mila, Université de Montréal, The Alan Turing Institute, University of Oxford, University of Pennsylvania, McGill University, Borden Ladner Gervais LLP, The Decision Lab, HEC Montréal, Max Planck Institute, Libéo, University of Toronto. Corresponding author general: richard.janda@mcgill.ca Corresponding author for public health: abhinav.sharma@mcgill.ca Corresponding author for privacy: ywyu@math.toronto.edu Corresponding author for machine learning: yoshua.bengio@mila.quebec Corresponding author for user perspective: brooke@thedecisionlab.com Corresponding author for technical implementation: jean-francois.rousseau@libeo.com 1 ar X iv :2 00 5. 08 50 2v 2 [ cs .C R ] 2 7 Ju l 2 02 0
Models of Human Behavioral Agents in Bandits, Contextual Bandits and RL
Baihan Lin
Guillermo Cecchi
Djallel Bouneffouf
Jenna Reinen
Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning.
Massimo Caccia
Pau Rodriguez
Oleksiy Ostapenko
Fabrice Normandin
Min Lin
Lucas Caccia
Issam Hadj Laradji
Alexandre Lacoste
David Vazquez