Portrait de Amin Memarian n'est pas disponible

Amin Memarian

Collaborateur·rice de recherche
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage par renforcement

Publications

Scalable Approaches for a Theory of Many Minds
Maximilian Puelma Touzel
Matthew D Riemer
Andrew Robert Williams
Elin Ahlstrand
Lucas Lehnert
Rupali Bhati
A major challenge as we move towards building agents for real-world problems, which could involve a massive number of human and/or machine a… (voir plus)gents, is that we must learn to reason about the behavior of these many other agents. In this paper, we consider the problem of scaling a predictive Theory of Mind (ToM) model to a very large number of interacting agents with a fixed computational budget. Motivated by the limited diversity of agent types, existing approaches to scalable TOM learn versatile single-agent representations for quickly adapting to new agents encountered sequentially. We consider the more general setting that many agents are observed in parallel and formulate the corresponding Theory of Many Minds (ToMM) problem of estimating the joint policy. We frame the scaling behavior of solutions in terms of parameter sharing schemes and in particular propose two parameter-free architectural features that endow models with the ability to exploit action correlations: encoding a multi-agent context, and decoding through an abstracted joint action space. The increased predictive capabilities that have come with foundation models have made it easier to imagine the possibility of using these models to make simulations that imitate the behavior of many agents within complex real-world systems. Being able to perform these simulations in a general-purpose way would not only help make more capable agents, it also would be a very useful capability for applications in social science, political science, and economics.
Is a Good Description Worth a Thousand Pictures? Reducing Multimodal Alignment to Text-Based, Unimodal Alignment
Touraj Laleh
Ardavan S. Nobandegani
Generative AI systems (ChatGPT, Llama, etc.) are increasingly adopted across a range of high-stake domains, including healthcare and crimina… (voir plus)l justice system. This rapid adoption indeed raises moral and ethical concerns. The emerging field of AI alignment aims to make AI systems that respect human values. In this work, we focus on evaluating the ethics of multimodal AI systems involving both text and images --- a relatively under-explored area, as most alignment work is currently focused on language models. Specifically, here we investigate whether the multimodal alignment problem (i.e., the problem of aligning a multimodal system) could be effectively reduced to the (text-based) unimodal alignment problem, wherein a language model would make a moral judgment purely based on a description of an image. Focusing on GPT-4 and LLaVA as two prominent examples of multimodal systems, here we demonstrate, rather surprisingly, that this reduction can be achieved with a relatively small loss in moral judgment performance in the case of LLaVa, and virtually no loss in the case of GPT-4.
Summarizing Societies: Agent Abstraction in Multi-Agent Reinforcement Learning
Maximilian Puelma Touzel
Matthew D Riemer
Rupali Bhati
Agents cannot make sense of many-agent societies through direct consideration of small-scale, low-level agent identities, but instead must r… (voir plus)ecognize emergent collective identities. Here, we take a first step towards a framework for recognizing this structure in large groups of low-level agents so that they can be modeled as a much smaller number of high-level agents—a process that we call agent abstraction. We illustrate this process by extending bisimulation metrics for state abstraction in reinforcement learning to the setting of multi-agent reinforcement learning and analyze a straightforward, if crude, abstraction based on experienced joint actions. It addresses non-stationarity due to other learning agents by improving minimax regret by a intuitive factor. To test if this compression factor provides signal for higher-level agency, we applied it to a large dataset of human play of the popular social dilemma game Diplomacy. We find that it correlates strongly with the degree of ground-truth abstraction of low-level units into the human players.