Portrait de Karim Jerbi

Karim Jerbi

Membre académique associé
Professeur agrégé, Université de Montréal, Département de psychologie
Sujets de recherche
Exploration des données
Neurosciences computationnelles
Systèmes dynamiques
Traitement du langage naturel

Biographie

Karim Jerbi est professeur agrégé au Département de psychologie de l'Université de Montréal. Il est titulaire de la Chaire de recherche du Canada en neurosciences computationnelles et en neuro-imagerie cognitive et directeur du centre UNIQUE, le centre de recherche en neuro-IA du Québec. Il est membre du Collège de nouveaux chercheurs et créateurs en art et en science de la Société royale du Canada.

Il a obtenu un doctorat en neurosciences cognitives et imagerie cérébrale de l'Université Pierre et Marie Curie à Paris (France) et un diplôme en génie biomédical de l'Université de Karlsruhe (Allemagne). Ses recherches se situent au carrefour des neurosciences cognitives, computationnelles et cliniques. Leur objectif est de sonder le rôle de la dynamique cérébrale à grande échelle dans la cognition d'ordre supérieur et d'étudier les altérations des réseaux cérébraux dans les cas de troubles psychiatriques et neurologiques.

La recherche multidisciplinaire menée dans son laboratoire combine la magnétoencéphalographie (MEG) et l'électroencéphalographie (EEG) du cuir chevelu et intracrânienne avec le traitement avancé des signaux et l'analyse des données, y compris l'apprentissage automatique. Les projets qui y sont en cours utilisent des enregistrements cérébraux électrophysiologiques pour examiner la dynamique des réseaux cérébraux à grande échelle dans une série de processus cognitifs (par exemple la prise de décision et la créativité) et dans différents états de conscience (éveil au repos, sommeil, rêve, anesthésie, méditation et états psychédéliques).

Karim Jerbi est fortement engagé dans la promotion de la justice sociale, de l'équité, de la diversité et de l'inclusion. Il s'intéresse également de près à la convergence entre les sciences du cerveau, l'IA, la créativité et l'art.

Étudiants actuels

Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - UdeM
Stagiaire de recherche - UdeM

Publications

Artificial Neural Networks for Magnetoencephalography: A review of an emerging field
Arthur Dehgan
Hamza Abdelhedi
Vanessa Hadid
Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive proces… (voir plus)ses with an unparalleled combination of high temporal and spatial precision. MEG data analytics has always relied on advanced signal processing and mathematical and statistical tools for various tasks ranging from data cleaning to probing the signals' rich dynamics and estimating the neural sources underlying the surface-level recordings. Like in most domains, the surge in Artificial Intelligence (AI) has led to the increased use of Machine Learning (ML) methods for MEG data classification. More recently, an emerging trend in this field is using Artificial Neural Networks (ANNs) to address many MEG-related tasks. This review provides a comprehensive overview of how ANNs are being used with MEG data from three vantage points: First, we review work that employs ANNs for MEG signal classification, i.e., for brain decoding. Second, we report on work that has used ANNs as putative models of information processing in the human brain. Finally, we examine studies that use ANNs as techniques to tackle methodological questions in MEG, including artifact correction and source estimation. Furthermore, we assess the current strengths and limitations of using ANNs with MEG and discuss future challenges and opportunities in this field. Finally, by establishing a detailed portrait of the field and providing practical recommendations for the future, this review seeks to provide a helpful reference for both seasoned MEG researchers and newcomers to the field who are interested in using ANNs to enhance the exploration of the complex dynamics of the human brain with MEG.
Artificial Neural Networks for Magnetoencephalography: A review of an emerging field
Arthur Dehgan
Hamza Abdelhedi
Vanessa Hadid
Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive proces… (voir plus)ses with an unparalleled combination of high temporal and spatial precision. MEG data analytics has always relied on advanced signal processing and mathematical and statistical tools for various tasks ranging from data cleaning to probing the signals' rich dynamics and estimating the neural sources underlying the surface-level recordings. Like in most domains, the surge in Artificial Intelligence (AI) has led to the increased use of Machine Learning (ML) methods for MEG data classification. More recently, an emerging trend in this field is using Artificial Neural Networks (ANNs) to address many MEG-related tasks. This review provides a comprehensive overview of how ANNs are being used with MEG data from three vantage points: First, we review work that employs ANNs for MEG signal classification, i.e., for brain decoding. Second, we report on work that has used ANNs as putative models of information processing in the human brain. Finally, we examine studies that use ANNs as techniques to tackle methodological questions in MEG, including artifact correction and source estimation. Furthermore, we assess the current strengths and limitations of using ANNs with MEG and discuss future challenges and opportunities in this field. Finally, by establishing a detailed portrait of the field and providing practical recommendations for the future, this review seeks to provide a helpful reference for both seasoned MEG researchers and newcomers to the field who are interested in using ANNs to enhance the exploration of the complex dynamics of the human brain with MEG.
Caffeine induces age-dependent increases in brain complexity and criticality during sleep
Philipp Thölke
Maxine Arcand-Lavigne
Tarek Lajnef
Sonia Frenette
Julie Carrier
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (voir plus) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during NREM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) during REM sleep, while no significant age effects were observed during NREM. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance suggests that caffeine promotes a shift in brain dynamics towards increased neural excitation and closer proximity to a critical regime, particularly during NREM sleep.
Divergent Perception: Framing Creative Cognition Through the Lens of Sensory Flexibility
Antoine Bellemare‐Pepin
Divergent Perception: Framing Creative Cognition Through the Lens of Sensory Flexibility
Antoine Bellemare‐Pepin
Creativity is a cornerstone of human evolution and is typically defined as the multifaceted ability to produce novel and useful artifacts. A… (voir plus)lthough much research has focused on divergent thinking, growing evidence underscores the importance of perceptual processing in fostering creativity, particularly through perceptual flexibility. The present work aims to offer a framework that relates creativity to perception, showing how sensory affordances, especially in ambiguous stimuli, can contribute to the generation of novel ideas. In doing so, we contextualize the phenomenon of pareidolia, which involves seeing familiar patterns in noisy or ambiguous stimuli, as a key perceptual mechanism of idea generation—one of the central stages of the creative process. We introduce “divergent perception” to describe the process by which individuals actively engage with the perceptual affordances provided by ambiguous sensory information, and illustrate how this concept could account for the heightened creativity observed in psychedelic and psychotic states. Moreover, we explore how divergent perception relates to cognitive mechanisms crucial in creative thinking, particularly focusing on the role of attention. Finally, we discuss future paths for the exploration of divergent perception, including targeted manipulation of stimulus characteristics and the investigation of the intricate interplay between bottom‐up and top‐down cognitive processes.
Structure-function coupling and decoupling during movie-watching and resting-state: Novel insights bridging EEG and structural imaging
Venkatesh Subramani
Giulia Lioi
Nicolas Farrugia
Structure-function coupling and decoupling during movie-watching and resting-state: Novel insights bridging EEG and structural imaging
Venkatesh Subramani
Giulia Lioi
Nicolas Farrugia
The intricate structural and functional architecture of the brain enables a wide range of cognitive processes ranging from perception and ac… (voir plus)tion to higher-order abstract thinking. Despite important progress, the relationship between the brain’s structural and functional properties is not yet fully established. In particular, the way the brain’s anatomy shapes its electrophysiological dynamics remains elusive. The electroencephalography (EEG) activity recorded during naturalistic tasks is thought to exhibit patterns of coupling with the underlying brain structure that vary as a function of behavior. Yet these patterns have not yet been sufficiently quantified. We address this gap by jointly examining individual Diffusion-Weighted Imaging (DWI) scans and continuous EEG recorded during video-watching and resting state, using a Graph Signal Processing (GSP) framework. By decomposing the structural graph into Eigenmodes and expressing the EEG activity as an extension of anatomy, GSP provides a way to quantify the structure-function coupling. We elucidate how the structure shapes function during naturalistic tasks such as movie-watching and how this association is modulated by tasks. We quantify the coupling relationship in a region-, time-, frequency-resolved manner. First of all, our findings indicate that the EEG activity in the sensorimotor cortex is strongly coupled with brain structure, while the activity in higher-order systems is less constrained by anatomy, i.e., shows more flexibility. In addition, we found that watching videos was associated with stronger structure-function coupling in the sensorimotor cortex, as compared to resting-state data. Second, time-resolved analysis revealed that the unimodal systems undergo minimal temporal fluctuation in structure-function association, and the transmodal system displays highest temporal fluctuations, with the exception of PCC seeing low fluctuations. Lastly, our frequency-resolved analysis revealed a consistent topography across different EEG rhythms, suggesting a similar relationship with the anatomical structure across frequency bands. Together, this unprecedented characterization of the link between structure and function using continuous EEG during naturalistic behavior underscores the role of anatomy in shaping ongoing cognitive processes. Taken together, by combining the temporal and spectral resolution of EEG and the methodological advantages of GSP, our work sheds new light onto the anatomo-functional organization of the brain.
One hundred years of EEG for brain and behaviour research
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (voir 75 de plus)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa
One hundred years of EEG for brain and behaviour research.
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (voir 75 de plus)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa
One hundred years of EEG for brain and behaviour research.
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (voir 75 de plus)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa
One hundred years of EEG for brain and behaviour research.
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (voir 75 de plus)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa
One hundred years of EEG for brain and behaviour research.
Faisal Mushtaq
Dominik Welke
Anne Gallagher
Yuri G. Pavlov
Layla Kouara
Jorge Bosch-Bayard
Jasper JF van den Bosch
Mahnaz Arvaneh
Amy R. Bland
Maximilien Chaumon
Cornelius Borck
Xun He
Steven J. Luck
Maro G. Machizawa
Cyril Pernet
Aina Puce
Sidney J. Segalowitz
Christine Rogers
Muhammad Awais
Claudio Babiloni … (voir 75 de plus)
Neil W. Bailey
Sylvain Baillet
Robert C. A. Bendall
Daniel Brady
Maria L. Bringas-Vega
Niko A. Busch
Ana Calzada-Reyes
Armand Chatard
Peter E. Clayson
Michael X. Cohen
Jonathan Cole
Martin Constant
Alexandra Corneyllie
Damien Coyle
Damian Cruse
Ioannis Delis
Arnaud Delorme
Damien Fair
Tiago H. Falk
Matthias Gamer
Giorgio Ganis
Kilian Gloy
Samantha Gregory
Cameron D. Hassall
Katherine E. Hiley
Richard B. Ivry
Michael Jenkins
Jakob Kaiser
Andreas Keil
Robert T. Knight
Silvia Kochen
Boris Kotchoubey
Olave E. Krigolson
Nicolas Langer
Heinrich R. Liesefeld
Sarah Lippé
Raquel E. London
Annmarie MacNamara
Scott Makeig
Welber Marinovic
Eduardo Martínez-Montes
Aleya A. Marzuki
Ryan K. Mathew
Christoph Michel
José d. R. Millán
Mark Mon-Williams
Lilia Morales-Chacón
Richard Naar
Gustav Nilsonne
Guiomar Niso
Erika Nyhus
Robert Oostenveld
Katharina Paul
Walter Paulus
Daniela M. Pfabigan
Gilles Pourtois
Stefan Rampp
Manuel Rausch
Kay Robbins
Paolo M. Rossini
Manuela Ruzzoli
Barbara Schmidt
Magdalena Senderecka
Narayanan Srinivasan
Yannik Stegmann
Paul M. Thompson
Mitchell Valdes-Sosa
Melle J. W. van der Molen
Domenica Veniero
Edelyn Verona
Bradley Voytek
Dezhong Yao
Alan C. Evans
Pedro Valdes-Sosa