Portrait of Yorguin Mantilla Ramos

Yorguin Mantilla Ramos

Master's Research - Université de Montréal
Supervisor
Research Topics
AI for Science
Brain-inspired AI
Cognitive Science
Computational Neuroscience
Interpretability
Mechanistic Interpretability
NeuroAI
Neuroscience
Scientific Machine Learning

Publications

The 2025 PNPL Competition: Speech Detection and Phoneme Classification in the LibriBrain Dataset
Gilad Landau
Miran Ozdogan
Gereon Elvers
Francesco Mantegna
Pratik Somaiya
Dulhan Hansaja Jayalath
Luisa Kurth
Teyun Kwon
Brendan Shillingford
Greg Farquhar
Minqi Jiang
Caglar Gulcehre
M. Woolrich
Natalie Voets
Oiwi Parker Jones
The advance of speech decoding from non-invasive brain data holds the potential for profound societal impact. Among its most promising appli… (see more)cations is the restoration of communication to paralysed individuals affected by speech deficits such as dysarthria, without the need for high-risk surgical interventions. The ultimate aim of the 2025 PNPL competition is to produce the conditions for an"ImageNet moment"or breakthrough in non-invasive neural decoding, by harnessing the collective power of the machine learning community. To facilitate this vision we present the largest within-subject MEG dataset recorded to date (LibriBrain) together with a user-friendly Python library (pnpl) for easy data access and integration with deep learning frameworks. For the competition we define two foundational tasks (i.e. Speech Detection and Phoneme Classification from brain data), complete with standardised data splits and evaluation metrics, illustrative benchmark models, online tutorial code, a community discussion board, and public leaderboard for submissions. To promote accessibility and participation the competition features a Standard track that emphasises algorithmic innovation, as well as an Extended track that is expected to reward larger-scale computing, accelerating progress toward a non-invasive brain-computer interface for speech.
The 2025 PNPL Competition: Speech Detection and Phoneme Classification in the LibriBrain Dataset
Gilad Landau
Miran Ozdogan
Gereon Elvers
Francesco Mantegna
Pratik Somaiya
Dulhan Hansaja Jayalath
Luisa Kurth
Teyun Kwon
Brendan Shillingford
Greg Farquhar
Minqi Jiang
Caglar Gulcehre
M. Woolrich
Natalie Voets
Oiwi Parker Jones
The advance of speech decoding from non-invasive brain data holds the potential for profound societal impact. Among its most promising appli… (see more)cations is the restoration of communication to paralysed individuals affected by speech deficits such as dysarthria, without the need for high-risk surgical interventions. The ultimate aim of the 2025 PNPL competition is to produce the conditions for an"ImageNet moment"or breakthrough in non-invasive neural decoding, by harnessing the collective power of the machine learning community. To facilitate this vision we present the largest within-subject MEG dataset recorded to date (LibriBrain) together with a user-friendly Python library (pnpl) for easy data access and integration with deep learning frameworks. For the competition we define two foundational tasks (i.e. Speech Detection and Phoneme Classification from brain data), complete with standardised data splits and evaluation metrics, illustrative benchmark models, online tutorial code, a community discussion board, and public leaderboard for submissions. To promote accessibility and participation the competition features a Standard track that emphasises algorithmic innovation, as well as an Extended track that is expected to reward larger-scale computing, accelerating progress toward a non-invasive brain-computer interface for speech.