Portrait of Philipp Thölke is unavailable

Philipp Thölke

Alumni

Publications

Caffeine induces age-dependent increases in brain complexity and criticality during sleep
Maxine Arcand-Lavigne
Tarek Lajnef
Sonia Frenette
Julie Carrier
Meditation induces shifts in neural oscillations, brain complexity and critical dynamics: Novel insights from MEG
Annalisa Pascarella
David Meunier
Jordan O’Byrne
Tarek Lajnef
Antonino Raffone
Roberto Guidotti
Vittorio Pizzella
Laura Marzetti
Caffeine induces age-dependent increases in brain complexity and criticality during sleep
Maxine Arcand-Lavigne
Tarek Lajnef
Sonia Frenette
Julie Carrier
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (see more) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during NREM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) during REM sleep, while no significant age effects were observed during NREM. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance suggests that caffeine promotes a shift in brain dynamics towards increased neural excitation and closer proximity to a critical regime, particularly during NREM sleep.
Caffeine induces age-dependent increases in brain complexity and criticality during sleep
Maxine Arcand-Lavigne
Tarek Lajnef
Sonia Frenette
Julie Carrier
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (see more) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during non-REM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) whose sleep brain dynamics were less affected by caffeine. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance provides novel insights into the effects caffeine has on the sleeping brain.
Neuro-GPT: Towards A Foundation Model for EEG
Wenhui Cui
Woojae Jeong
Takfarinas Medani
Anand A. Joshi
Richard M. Leahy
To handle the scarcity and heterogeneity of electroencephalography (EEG) data for Brain-Computer Interface (BCI) tasks, and to harness the p… (see more)ower of large publicly available data sets, we propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model. The foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments. We then fine-tune the model on a Motor Imagery Classification task to validate its performance in a low-data regime (9 subjects). Our experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch, which provides evidence for the generalizability of the foundation model and its ability to address challenges of data scarcity and heterogeneity in EEG. The code is publicly available at github.com/wenhui0206/NeuroGPT.
Divergent Creativity in Humans and Large Language Models
Antoine Bellemare‐Pepin
Franccois Lespinasse
Yann Harel
Jay A. Olson
Karim Jerbi CoCo Lab
Psychology Department
U. Montr'eal
Montreal
Qc
Canada
Music department
C. University
Sociology
Anthropology department
Mila
Departmentof Psychology
University of Toronto Mississauga … (see 5 more)
Mississauga
On
Department of Computer Science
Operations Research
Unique Center
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
Divergent Creativity in Humans and Large Language Models
Antoine Bellemare‐Pepin
Franccois Lespinasse
Yann Harel
Jay A. Olson
Karim Jerbi CoCo Lab
Psychology Department
U. Montr'eal
Montreal.
Qc
Canada
Music department
C. University
Sociology
Anthropology department
Mila
Departmentof Psychology
University of Toronto Mississauga … (see 5 more)
Mississauga
On
Department of Computer Science
Operations Research
Unique Center
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (see more)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
Divergent Creativity in Humans and Large Language Models
Antoine Bellemare-Pepin
Franccois Lespinasse
Yann Harel
Jay A. Olson
Karim Jerbi CoCo Lab
Psychology Department
U. Montr'eal
Montreal
Qc
Canada
Music department
C. University
Sociology
Anthropology department
Mila
Departmentof Psychology
University of Toronto Mississauga … (see 5 more)
Mississauga
On
Department of Computer Science
Operations Research
Unique Center
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
Divergent Creativity in Humans and Large Language Models
Antoine Bellemare‐Pepin
Franccois Lespinasse
Yann Harel
Jay A. Olson
Karim Jerbi CoCo Lab
Psychology Department
U. Montr'eal
Montreal.
Qc
Canada
Music department
C. University
Sociology
Anthropology department
Mila
Departmentof Psychology
University of Toronto Mississauga … (see 5 more)
Mississauga
On
Department of Computer Science
Operations Research
Unique Center
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (see more)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
Divergent Creativity in Humans and Large Language Models
Antoine Bellemare-Pepin
Franccois Lespinasse
Yann Harel
Jay A. Olson
Karim Jerbi CoCo Lab
Psychology Department
U. Montr'eal
Montreal
Qc
Canada
Music department
C. University
Sociology
Anthropology department
Mila
Departmentof Psychology
University of Toronto Mississauga … (see 5 more)
Mississauga
On
Department of Computer Science
Operations Research
Unique Center
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
Bio-Mechanical Poet: An Immersive Audiovisual Playground for Brain Signals and Generative AI.
Antoine Bellemare‐Pepin
Yann Harel
François Lespinasse
Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
Yorguin-Jose Mantilla-Ramos
Charlotte Maschke
Yann Harel
Anirudha Kemtur
Loubna Mekki Berrada
Myriam Sahraoui
Tammy Young
Antoine Bellemare‐Pepin
Clara El Khantour
Mathieu Landry
Annalisa Pascarella
Vanessa Hadid
Etienne Combrisson
Jordan O’Byrne