Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (see more) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during NREM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) during REM sleep, while no significant age effects were observed during NREM. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance suggests that caffeine promotes a shift in brain dynamics towards increased neural excitation and closer proximity to a critical regime, particularly during NREM sleep.
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (see more) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during non-REM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) whose sleep brain dynamics were less affected by caffeine. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance provides novel insights into the effects caffeine has on the sleeping brain.
To handle the scarcity and heterogeneity of electroencephalography (EEG) data for Brain-Computer Interface (BCI) tasks, and to harness the p… (see more)ower of large publicly available data sets, we propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model. The foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments. We then fine-tune the model on a Motor Imagery Classification task to validate its performance in a low-data regime (9 subjects). Our experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch, which provides evidence for the generalizability of the foundation model and its ability to address challenges of data scarcity and heterogeneity in EEG. The code is publicly available at github.com/wenhui0206/NeuroGPT.
2024-05-27
2024 IEEE International Symposium on Biomedical Imaging (ISBI) (published)
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (see more)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (see more)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (see more)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.