Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (voir plus) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during NREM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) during REM sleep, while no significant age effects were observed during NREM. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance suggests that caffeine promotes a shift in brain dynamics towards increased neural excitation and closer proximity to a critical regime, particularly during NREM sleep.
Caffeine is the most widely consumed psychoactive stimulant worldwide. Yet important gaps persist in understanding its effects on the brain,… (voir plus) especially during sleep. We analyzed sleep EEG in 40 subjects, contrasting 200mg of caffeine against a placebo condition, utilizing inferential statistics and machine learning. We found that caffeine ingestion led to an increase in brain complexity, a widespread flattening of the power spectrum’s 1/f-like slope, and a reduction in long-range temporal correlations. Being most prominent during non-REM sleep, these results suggest that caffeine shifts the brain towards a critical regime and more diverse neural dynamics. Interestingly, this was more pronounced in younger adults (20-27 years) compared to middle-aged participants (41-58 years) whose sleep brain dynamics were less affected by caffeine. Interpreting these data in the light of modeling and empirical work on EEG-derived measures of excitation-inhibition balance provides novel insights into the effects caffeine has on the sleeping brain.
To handle the scarcity and heterogeneity of electroencephalography (EEG) data for Brain-Computer Interface (BCI) tasks, and to harness the p… (voir plus)ower of large publicly available data sets, we propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model. The foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments. We then fine-tune the model on a Motor Imagery Classification task to validate its performance in a low-data regime (9 subjects). Our experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch, which provides evidence for the generalizability of the foundation model and its ability to address challenges of data scarcity and heterogeneity in EEG. The code is publicly available at github.com/wenhui0206/NeuroGPT.
2024-05-27
2024 IEEE International Symposium on Biomedical Imaging (ISBI) (publié)
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (voir plus)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (voir plus)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (voir plus)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.
The recent surge in the capabilities of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin … (voir plus)to human capabilities. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLM creativity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence suggesting that LLMs can indeed surpass human capabilities in specific creative tasks such as divergent association and creative writing. Our quantitative benchmarking framework opens up new paths for the development of more creative LLMs, but it also encourages more granular inquiries into the distinctive elements that constitute human inventive thought processes, compared to those that can be artificially generated.
The recent surge of Large Language Models (LLMs) has led to claims that they are approaching a level of creativity akin to human capabilitie… (voir plus)s. This idea has sparked a blend of excitement and apprehension. However, a critical piece that has been missing in this discourse is a systematic evaluation of LLMs'semantic diversity, particularly in comparison to human divergent thinking. To bridge this gap, we leverage recent advances in computational creativity to analyze semantic divergence in both state-of-the-art LLMs and a substantial dataset of 100,000 humans. We found evidence that LLMs can surpass average human performance on the Divergent Association Task, and approach human creative writing abilities, though they fall short of the typical performance of highly creative humans. Notably, even the top performing LLMs are still largely surpassed by highly creative individuals, underscoring a ceiling that current LLMs still fail to surpass. Our human-machine benchmarking framework addresses the polemic surrounding the imminent replacement of human creative labour by AI, disentangling the quality of the respective creative linguistic outputs using established objective measures. While prompting deeper exploration of the distinctive elements of human inventive thought compared to those of AI systems, we lay out a series of techniques to improve their outputs with respect to semantic diversity, such as prompt design and hyper-parameter tuning.