Portrait de Karim Jerbi

Karim Jerbi

Membre académique associé
Professeur agrégé, Université de Montréal, Département de psychologie
Sujets de recherche
Exploration des données
Neurosciences computationnelles
Systèmes dynamiques
Traitement du langage naturel

Biographie

Karim Jerbi est professeur agrégé au Département de psychologie de l'Université de Montréal. Il est titulaire de la Chaire de recherche du Canada en neurosciences computationnelles et en neuro-imagerie cognitive et directeur du centre UNIQUE, le centre de recherche en neuro-IA du Québec. Il est membre du Collège de nouveaux chercheurs et créateurs en art et en science de la Société royale du Canada.

Il a obtenu un doctorat en neurosciences cognitives et imagerie cérébrale de l'Université Pierre et Marie Curie à Paris (France) et un diplôme en génie biomédical de l'Université de Karlsruhe (Allemagne). Ses recherches se situent au carrefour des neurosciences cognitives, computationnelles et cliniques. Leur objectif est de sonder le rôle de la dynamique cérébrale à grande échelle dans la cognition d'ordre supérieur et d'étudier les altérations des réseaux cérébraux dans les cas de troubles psychiatriques et neurologiques.

La recherche multidisciplinaire menée dans son laboratoire combine la magnétoencéphalographie (MEG) et l'électroencéphalographie (EEG) du cuir chevelu et intracrânienne avec le traitement avancé des signaux et l'analyse des données, y compris l'apprentissage automatique. Les projets qui y sont en cours utilisent des enregistrements cérébraux électrophysiologiques pour examiner la dynamique des réseaux cérébraux à grande échelle dans une série de processus cognitifs (par exemple la prise de décision et la créativité) et dans différents états de conscience (éveil au repos, sommeil, rêve, anesthésie, méditation et états psychédéliques).

Karim Jerbi est fortement engagé dans la promotion de la justice sociale, de l'équité, de la diversité et de l'inclusion. Il s'intéresse également de près à la convergence entre les sciences du cerveau, l'IA, la créativité et l'art.

Étudiants actuels

Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - UdeM
Stagiaire de recherche - UdeM

Publications

GABAergic inhibition shapes behavior and neural dynamics in human visual working memory
Jan Kujala
Carolina Ciumas
Julien Jung
Sandrine Bouvard
Françoise Lecaignard
Amélie Lothe
Romain Bouet
Philippe Ryvlin
Abstract Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gam… (voir plus)ma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.
Bio-Mechanical Poet: An Immersive Audiovisual Playground for Brain Signals and Generative AI.
Philipp Thölke
Antoine Bellemare Pépin
Yann Harel
François Lespinasse
Behavioral Imitation with Artificial Neural Networks Leads to Personalized Models of Brain Dynamics During Videogame Play
Anirudha Kemtur
Fraçois Paugam
Basile Pinsard
Yann Harel
Pravish Sainath
Maximilien Le Clei
Julie Boyle
Artificial Neural networks (ANN) trained on complex tasks are increasingly used in neuroscience to model brain dynamics, a process called br… (voir plus)ain encoding. Videogames have been extensively studied in the field of artificial intelligence, but have hardly been used yet for brain encoding. Videogames provide a promising framework to understand brain activity in a rich, engaging, and active environment. A major challenge raised by complex videogames is that individual behavior is highly variable across subjects, and we hypothesized that ANNs need to account for subject-specific behavior in order to properly capture brain dynamics. In this study, we used ANNs to model functional magnetic resonance imaging (fMRI) and behavioral gameplay data, both collected while subjects played the Shinobi III videogame. Using imitation learning, we trained an ANN to play the game while closely replicating the unique gameplay style of individual participants. We found that hidden layers of our imitation learning model successfully encoded task-relevant neural representations, and predicted individual brain dynamics with higher accuracy than models trained on other subjects’ gameplay or control models. The highest correlations between layer activations and brain signals were observed in biologically plausible brain areas, i.e. somatosensory, attention, and visual networks. Our results demonstrate that combining imitation learning, brain imaging, and videogames can allow us to model complex individual brain patterns derived from decision making in a rich, complex environment.
Open design of a reproducible videogame controller for MRI and MEG
Yann Harel
André Cyr
Julie Boyle
Basile Pinsard
Jeremy Bernard
Marie-France Fourcade
Himanshu Aggarwal
Ana Fernanda Ponce
Bertrand Thirion
Tuning Minimum-Norm regularization parameters for optimal MEG connectivity estimation
Elisabetta Vallarino
Ana-Sofía Hincapié Casas
R. Leahy
Annalisa Pascarella
Alberto Sorrentino
Sara Sommariva
Criticality of resting-state EEG predicts perturbational complexity and level of consciousness during anesthesia
Charlotte Maschke
Jordan O’Byrne
Michele Angelo Colombo
Melanie Boly
Olivia Gosseries
Steven Laureys
Mario Rosanova
Stefanie Blain-Moraes
Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits ad… (voir plus)aptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects’ PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness. 2 Significance Statement Complexity has long been of interest in consciousness science and had a fundamental impact on many of today’s theories of consciousness. The perturbational complexity index (PCI) uses the complexity of the brain’s response to cortical perturbations to quantify the presence of consciousness. We propose criticality as a unifying framework underlying maximal complexity and sensitivity to perturbation in the conscious brain. We demonstrate that criticality measures derived from resting-state electroencephalography can distinguish conscious from unconscious states, using propofol, xenon and ketamine anesthesia, and from these measures we were able to predict the PCI with a mean error below 7%. Our results support the hypothesis that critical brain dynamics are implicated in the emergence of consciousness and may provide new directions for the assessment of consciousness.
Autonomic nervous system modulation during self-induced non-ordinary states of consciousness
Victor Oswald
Audrey Vanhaudenhuyse
Jitka Annen
Charlotte Martial
Aminata Bicego
Floriane Rousseaux
Corine Sombrun
Yann Harel
Marie-Elisabeth Faymonville
Steven Laureys
Olivia Gosseries
Local field potentials in human motor and non-motor brain areas encode the direction of upcoming movements: An intracerebral EEG classification study
Etienne Combrisson
Franck Di Rienzo
Anne-Lise Saive
Marcela Perrone-Bertolotti
Juan LP Soto
Philippe Kahane
Jean-Philippe Lachaux
Aymeric Guillot
Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
Philipp Thölke
Yorguin-Jose Mantilla-Ramos
Hamza Abdelhedi
Charlotte Maschke
Arthur Dehgan
Yann Harel
Anirudha Kemtur
Loubna Mekki Berrada
Myriam Sahraoui
Tammy Young
Antoine Bellemare Pépin
Clara El Khantour
Mathieu Landry
Annalisa Pascarella
Vanessa Hadid
Etienne Combrisson
Jordan O’Byrne
Differential and overlapping effects between exogenous and endogenous attention shape perceptual facilitation during visual processing
Mathieu Landry
Jason da Silva Castanheira
Aperiodic brain activity and response to anesthesia vary in disorders of consciousness
Charlotte Maschke
Catherine Duclos
Adrian M. Owen
Stefanie Blain-Moraes
Stefanie
Rhythmic Information Sampling in the Brain during Visual Recognition
Laurent Caplette
Frédéric Gosselin