Portrait de Irina Rish

Irina Rish

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage en ligne
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Neurosciences computationnelles
Traitement du langage naturel

Biographie

Irina Rish est professeure titulaire à l'Université de Montréal (UdeM), où elle dirige le Laboratoire d'IA autonome. Membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, elle est titulaire d'une chaire d'excellence en recherche du Canada (CERC) et d'une chaire en IA Canada-CIFAR. Irina dirige le projet INCITE du ministère américain de l'Environnement au sujet des modèles de fondation évolutifs sur les superordinateurs Summit et Frontier à l'Oak Ridge Leadership Computing Facility (OLCF). Elle est cofondatrice et directrice scientifique de Nolano.ai.

Ses recherches actuelles portent sur les lois de mise à l'échelle neuronale et les comportements émergents (capacités et alignement) dans les modèles de fondation, ainsi que sur l'apprentissage continu, la généralisation hors distribution et la robustesse. Avant de se joindre à l'UdeM en 2019, Irina était chercheuse au Centre de recherche IBM Thomas J. Watson, où elle a travaillé sur divers projets à l'intersection des neurosciences et de l'IA, et dirigé le défi NeuroAI. Elle a reçu plusieurs prix IBM : ceux de l’excellence et de l’innovation exceptionnelle (2018), celui de la réalisation technique exceptionnelle (2017), et celui de l’accomplissement en recherche (2009). Elle détient 64 brevets et a écrit plus de 120 articles de recherche, plusieurs chapitres de livres, trois livres publiés et une monographie sur la modélisation éparse.

Étudiants actuels

Stagiaire de recherche
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - -
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - McGill

Publications

Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
Seq-VCR: Preventing Collapse in Intermediate Transformer Representations for Enhanced Reasoning
Md Rifat Arefin
Nicolas Gontier
Ravid Shwartz-Ziv
Artificial Neural Networks for Magnetoencephalography: A review of an emerging field
Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive proces… (voir plus)ses with an unparalleled combination of high temporal and spatial precision. MEG data analytics has always relied on advanced signal processing and mathematical and statistical tools for various tasks ranging from data cleaning to probing the signals' rich dynamics and estimating the neural sources underlying the surface-level recordings. Like in most domains, the surge in Artificial Intelligence (AI) has led to the increased use of Machine Learning (ML) methods for MEG data classification. More recently, an emerging trend in this field is using Artificial Neural Networks (ANNs) to address many MEG-related tasks. This review provides a comprehensive overview of how ANNs are being used with MEG data from three vantage points: First, we review work that employs ANNs for MEG signal classification, i.e., for brain decoding. Second, we report on work that has used ANNs as putative models of information processing in the human brain. Finally, we examine studies that use ANNs as techniques to tackle methodological questions in MEG, including artifact correction and source estimation. Furthermore, we assess the current strengths and limitations of using ANNs with MEG and discuss future challenges and opportunities in this field. Finally, by establishing a detailed portrait of the field and providing practical recommendations for the future, this review seeks to provide a helpful reference for both seasoned MEG researchers and newcomers to the field who are interested in using ANNs to enhance the exploration of the complex dynamics of the human brain with MEG.
CHIRP: A Fine-Grained Benchmark for Open-Ended Response Evaluation in Vision-Language Models
Daniel Z Kaplan
Qirui Sun
Jonathan Siu Chi Lim
Quentin Gregory Anthony
Edwin Fennell
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and ben… (voir plus)chmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
CHIRP: A Fine-Grained Benchmark for Open-Ended Response Evaluation in Vision-Language Models
Daniel Z Kaplan
Qirui Sun
Jonathan Siu Chi Lim
Quentin Gregory Anthony
Edwin Fennell
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and ben… (voir plus)chmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
Daniel Z Kaplan
Qirui Sun
Jonathan Siu Chi Lim
Quentin Gregory Anthony
Edwin Fennell
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and ben… (voir plus)chmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning
Supriyo Chakraborty
Nima Chitsazan
This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models … (voir plus)undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl
Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference
Gopeshh Raaj Subbaraj
Realtime environments change even as agents perform action inference and learning, thus requiring high interaction frequencies to effectivel… (voir plus)y minimize regret. However, recent advances in machine learning involve larger neural networks with longer inference times, raising questions about their applicability in realtime systems where reaction time is crucial. We present an analysis of lower bounds on regret in realtime reinforcement learning (RL) environments to show that minimizing long-term regret is generally impossible within the typical sequential interaction and learning paradigm, but often becomes possible when sufficient asynchronous compute is available. We propose novel algorithms for staggering asynchronous inference processes to ensure that actions are taken at consistent time intervals, and demonstrate that use of models with high action inference times is only constrained by the environment's effective stochasticity over the inference horizon, and not by action frequency. Our analysis shows that the number of inference processes needed scales linearly with increasing inference times while enabling use of models that are multiple orders of magnitude larger than existing approaches when learning from a realtime simulation of Game Boy games such as Pok\'emon and Tetris.
Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference
Gopeshh Raaj Subbaraj
Realtime environments change even as agents perform action inference and learning, thus requiring high interaction frequencies to effectivel… (voir plus)y minimize regret. However, recent advances in machine learning involve larger neural networks with longer inference times, raising questions about their applicability in realtime systems where reaction time is crucial. We present an analysis of lower bounds on regret in realtime reinforcement learning (RL) environments to show that minimizing long-term regret is generally impossible within the typical sequential interaction and learning paradigm, but often becomes possible when sufficient asynchronous compute is available. We propose novel algorithms for staggering asynchronous inference processes to ensure that actions are taken at consistent time intervals, and demonstrate that use of models with high action inference times is only constrained by the environment's effective stochasticity over the inference horizon, and not by action frequency. Our analysis shows that the number of inference processes needed scales linearly with increasing inference times while enabling use of models that are multiple orders of magnitude larger than existing approaches when learning from a realtime simulation of Game Boy games such as Pok\'emon and Tetris.
Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment. Tradit… (voir plus)ionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimizes the reward through repeated RL procedures. This game-solving approach is both computationally expensive and difficult to stabilize. In this work, we propose a novel approach to IRL by direct policy optimization: exploiting a linear factorization of the return as the inner product of successor features and a reward vector, we design an IRL algorithm by policy gradient descent on the gap between the learner and expert features. Our non-adversarial method does not require learning a reward function and can be solved seamlessly with existing actor-critic RL algorithms. Remarkably, our approach works in state-only settings without expert action labels, a setting which behavior cloning (BC) cannot solve. Empirical results demonstrate that our method learns from as few as a single expert demonstration and achieves improved performance on various control tasks.
GitChameleon: Unmasking the Version-Switching Capabilities of Code Generation Models
Eilif Benjamin Muller
Terry Yue Zhuo
Massimo Caccia
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Étienne Marcotte
Valentina Zantedeschi
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (voir plus) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .