Portrait de Irina Rish

Irina Rish

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage en ligne
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Neurosciences computationnelles
Traitement du langage naturel

Biographie

Irina Rish est professeure titulaire à l'Université de Montréal (UdeM), où elle dirige le Laboratoire d'IA autonome. Membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, elle est titulaire d'une chaire d'excellence en recherche du Canada (CERC) et d'une chaire en IA Canada-CIFAR. Irina dirige le projet INCITE du ministère américain de l'Environnement au sujet des modèles de fondation évolutifs sur les superordinateurs Summit et Frontier à l'Oak Ridge Leadership Computing Facility (OLCF). Elle est cofondatrice et directrice scientifique de Nolano.ai.

Ses recherches actuelles portent sur les lois de mise à l'échelle neuronale et les comportements émergents (capacités et alignement) dans les modèles de fondation, ainsi que sur l'apprentissage continu, la généralisation hors distribution et la robustesse. Avant de se joindre à l'UdeM en 2019, Irina était chercheuse au Centre de recherche IBM Thomas J. Watson, où elle a travaillé sur divers projets à l'intersection des neurosciences et de l'IA, et dirigé le défi NeuroAI. Elle a reçu plusieurs prix IBM : ceux de l’excellence et de l’innovation exceptionnelle (2018), celui de la réalisation technique exceptionnelle (2017), et celui de l’accomplissement en recherche (2009). Elle détient 64 brevets et a écrit plus de 120 articles de recherche, plusieurs chapitres de livres, trois livres publiés et une monographie sur la modélisation éparse.

Étudiants actuels

Visiteur de recherche indépendant - UdeM
Co-superviseur⋅e :
Stagiaire de recherche
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :

Publications

Dance of the Neurons: Unraveling Sex from Brain Signals (short paper).
Mohammad-Javad Darvishi Bayazi
Mohammad S. Ghaemi
Jocelyn Faubert
Improving Adversarial Robustness in Vision-Language Models with Architecture and Prompt Design.
Rishika Bhagwatkar
Shravan Nayak
Towards Machines that Trust: AI Agents Learn to Trust in the Trust Game
Ardavan S. Nobandegani
Thomas Shultz
Widely considered a cornerstone of human morality, trust shapes many aspects of human social interactions. In this work, we present a theore… (voir plus)tical analysis of the
Challenging Common Assumptions about Catastrophic Forgetting and Knowledge Accumulation
Timothee LESORT
Oleksiy Ostapenko
Pau Rodriguez
Diganta Misra
Md Rifat Arefin
Lag-Llama: Towards Foundation Models for Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Biloš
Hena Ghonia
Nadhir Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (voir plus)Llama, a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen "out-of-distribution" time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws to fit and predict model scaling behavior. The open source code is made available at https://github.com/kashif/pytorch-transformer-ts.
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Bilovs
Hena Ghonia
Nadhir Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Bilovs
Hena Ghonia
N. Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Over the past years, foundation models have caused a paradigm shift in machine learning due to their unprecedented capabilities for zero-sho… (voir plus)t and few-shot generalization. However, despite the success of foundation models in modalities such as natural language processing and computer vision, the development of foundation models for time series forecasting has lagged behind. We present Lag-Llama, a general-purpose foundation model for univariate probabilistic time series forecasting based on a decoder-only transformer architecture that uses lags as covariates. Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities compared to a wide range of forecasting models on downstream datasets across domains. Moreover, when fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance, outperforming prior deep learning approaches, emerging as the best general-purpose model on average. Lag-Llama serves as a strong contender to the current state-of-art in time series forecasting and paves the way for future advancements in foundation models tailored to time series data.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Pedro Vianna
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Benjamin Thérien
Michael Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (voir plus)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
Maximum State Entropy Exploration using Predecessor and Successor Representations
Arnav Kumar Jain
Lucas Lehnert
Animals have a developed ability to explore that aids them in important tasks such as locating food, exploring for shelter, and finding misp… (voir plus)laced items. These exploration skills necessarily track where they have been so that they can plan for finding items with relative efficiency. Contemporary exploration algorithms often learn a less efficient exploration strategy because they either condition only on the current state or simply rely on making random open-loop exploratory moves. In this work, we propose
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
Beyond performance: the role of task demand, effort, and individual differences in ab initio pilots
Mohammad Javad Darvishi Bayazi
Andrew Law
Sergio Mejia Romero
Sion Jennings
Jocelyn Faubert
Neural efficiency in an aviation task with different levels of difficulty: Assessing different biometrics during a performance task
Mohammad Javad Darvishi Bayazi
Andrew Law
Sergio Mejia Romero
Sion Jennings
Jocelyn Faubert