Portrait of Irina Rish

Irina Rish

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Research Topics
Computational Neuroscience
Deep Learning
Generative Models
Multimodal Learning
Natural Language Processing
Online Learning
Reinforcement Learning

Biography

Irina Rish is a full professor at the Université de Montréal (UdeM), where she leads the Autonomous AI Lab, and a core academic member of Mila – Quebec Artificial Intelligence Institute.

In addition to holding a Canada Excellence Research Chair (CERC) and a CIFAR Chair, she leads the U.S. Department of Energy’s INCITE project on Scalable Foundation Models on Summit & Frontier supercomputers at the Oak Ridge Leadership Computing Facility. She co-founded and serves as CSO of Nolano.ai.

Rish’s current research interests include neural scaling laws and emergent behaviors (capabilities and alignment) in foundation models, as well as continual learning, out-of-distribution generalization and robustness.

Before joining UdeM in 2019, she was a research scientist at the IBM T.J. Watson Research Center, where she worked on various projects at the intersection of neuroscience and AI, and led the Neuro-AI challenge. She was awarded the IBM Eminence & Excellence Award and IBM Outstanding Innovation Award (2018), IBM Outstanding Technical Achievement Award (2017) and IBM Research Accomplishment Award (2009).

She holds 64 patents and has published 120 research papers, several book chapters, three edited books and a monograph on sparse modeling.

Current Students

Independent visiting researcher - Université de Montréal
Co-supervisor :
Research Intern
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher
Master's Research - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
Professional Master's - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Collaborating Alumni
PhD - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher
PhD - McGill University
Principal supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
PhD - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Collaborating researcher
Principal supervisor :

Publications

Dance of the Neurons: Unraveling Sex from Brain Signals (short paper).
Mohammad-Javad Darvishi Bayazi
Mohammad S. Ghaemi
Jocelyn Faubert
Improving Adversarial Robustness in Vision-Language Models with Architecture and Prompt Design.
Rishika Bhagwatkar
Shravan Nayak
Towards Machines that Trust: AI Agents Learn to Trust in the Trust Game
Ardavan S. Nobandegani
Thomas Shultz
Widely considered a cornerstone of human morality, trust shapes many aspects of human social interactions. In this work, we present a theore… (see more)tical analysis of the
Challenging Common Assumptions about Catastrophic Forgetting and Knowledge Accumulation
Timothee LESORT
Oleksiy Ostapenko
Pau Rodriguez
Diganta Misra
Md Rifat Arefin
Lag-Llama: Towards Foundation Models for Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Biloš
Hena Ghonia
Nadhir Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama, a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen "out-of-distribution" time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws to fit and predict model scaling behavior. The open source code is made available at https://github.com/kashif/pytorch-transformer-ts.
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Bilovs
Hena Ghonia
Nadhir Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Arjun Ashok
Andrew Robert Williams
Arian Khorasani
George Adamopoulos
Rishika Bhagwatkar
Marin Bilovs
Hena Ghonia
N. Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Over the past years, foundation models have caused a paradigm shift in machine learning due to their unprecedented capabilities for zero-sho… (see more)t and few-shot generalization. However, despite the success of foundation models in modalities such as natural language processing and computer vision, the development of foundation models for time series forecasting has lagged behind. We present Lag-Llama, a general-purpose foundation model for univariate probabilistic time series forecasting based on a decoder-only transformer architecture that uses lags as covariates. Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities compared to a wide range of forecasting models on downstream datasets across domains. Moreover, when fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance, outperforming prior deep learning approaches, emerging as the best general-purpose model on average. Lag-Llama serves as a strong contender to the current state-of-art in time series forecasting and paves the way for future advancements in foundation models tailored to time series data.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Pedro Vianna
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Benjamin Thérien
Michael Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (see more)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
Maximum State Entropy Exploration using Predecessor and Successor Representations
Arnav Kumar Jain
Lucas Lehnert
Animals have a developed ability to explore that aids them in important tasks such as locating food, exploring for shelter, and finding misp… (see more)laced items. These exploration skills necessarily track where they have been so that they can plan for finding items with relative efficiency. Contemporary exploration algorithms often learn a less efficient exploration strategy because they either condition only on the current state or simply rely on making random open-loop exploratory moves. In this work, we propose
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
Beyond performance: the role of task demand, effort, and individual differences in ab initio pilots
Mohammad Javad Darvishi Bayazi
Andrew Law
Sergio Mejia Romero
Sion Jennings
Jocelyn Faubert
Neural efficiency in an aviation task with different levels of difficulty: Assessing different biometrics during a performance task
Mohammad Javad Darvishi Bayazi
Andrew Law
Sergio Mejia Romero
Sion Jennings
Jocelyn Faubert