Portrait of Arjun Ashok is unavailable

Arjun Ashok

PhD - Université de Montréal
Supervisor
Co-supervisor
Research Topics
Probabilistic Models
Time Series
Time Series Forecasting
Time Series Modeling

Publications

Beyond Na\"ive Prompting: Strategies for Improved Zero-shot Context-aided Forecasting with LLMs
Andrew Robert Williams
Vincent Zhihao Zheng
Étienne Marcotte
Valentina Zantedeschi
Forecasting in real-world settings requires models to integrate not only historical data but also relevant contextual information, often ava… (see more)ilable in textual form. While recent work has shown that large language models (LLMs) can be effective context-aided forecasters via na\"ive direct prompting, their full potential remains underexplored. We address this gap with 4 strategies, providing new insights into the zero-shot capabilities of LLMs in this setting. ReDP improves interpretability by eliciting explicit reasoning traces, allowing us to assess the model's reasoning over the context independently from its forecast accuracy. CorDP leverages LLMs solely to refine existing forecasts with context, enhancing their applicability in real-world forecasting pipelines. IC-DP proposes embedding historical examples of context-aided forecasting tasks in the prompt, substantially improving accuracy even for the largest models. Finally, RouteDP optimizes resource efficiency by using LLMs to estimate task difficulty, and routing the most challenging tasks to larger models. Evaluated on different kinds of context-aided forecasting tasks from the CiK benchmark, our strategies demonstrate distinct benefits over na\"ive prompting across LLMs of different sizes and families. These results open the door to further simple yet effective improvements in LLM-based context-aided forecasting.
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Alexandre Lacoste
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
Étienne Marcotte
Valentina Zantedeschi
We introduce a new model for multivariate probabilistic time series prediction, designed to flexibly address a range of tasks including fore… (see more)casting, interpolation, and their combinations. Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS), wherein the number of distributional parameters now scales linearly with the number of variables instead of factorially. The new objective requires the introduction of a training curriculum, which goes hand-in-hand with necessary changes to the original architecture. We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks, while maintaining the flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled time series. Code is made available at https://github.com/ServiceNow/TACTiS.
Lag-Llama: Towards Foundation Models for Time Series Forecasting
Kashif Rasul
Andrew Robert Williams
Marin Biloš
Hena Ghonia
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama, a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen "out-of-distribution" time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws to fit and predict model scaling behavior. The open source code is made available at https://github.com/kashif/pytorch-transformer-ts.
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Andrew Robert Williams
Marin Bilovs
Hena Ghonia
N. Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Over the past years, foundation models have caused a paradigm shift in machine learning due to their unprecedented capabilities for zero-sho… (see more)t and few-shot generalization. However, despite the success of foundation models in modalities such as natural language processing and computer vision, the development of foundation models for time series forecasting has lagged behind. We present Lag-Llama, a general-purpose foundation model for univariate probabilistic time series forecasting based on a decoder-only transformer architecture that uses lags as covariates. Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities compared to a wide range of forecasting models on downstream datasets across domains. Moreover, when fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance, outperforming prior deep learning approaches, emerging as the best general-purpose model on average. Lag-Llama serves as a strong contender to the current state-of-art in time series forecasting and paves the way for future advancements in foundation models tailored to time series data.
Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting
Kashif Rasul
Andrew Robert Williams
Marin Bilovs
Hena Ghonia
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
Étienne Marcotte
Valentina Zantedeschi
We introduce a new model for multivariate probabilistic time series prediction, designed to flexibly address a range of tasks including fore… (see more)casting, interpolation, and their combinations. Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS), wherein the number of distributional parameters now scales linearly with the number of variables instead of factorially. The new objective requires the introduction of a training curriculum, which goes hand-in-hand with necessary changes to the original architecture. We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks, while maintaining the flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled time series. Code is made available at https://github.com/ServiceNow/TACTiS.
Lag-Llama: Towards Foundation Models for Time Series Forecasting
Kashif Rasul
Andrew Robert Williams
Marin Biloš
Hena Ghonia
N. Hassen
Anderson Schneider
Sahil Garg
Yuriy Nevmyvaka
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama , a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen “out-of-distribution” time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws [7] to fit and predict model scaling behavior. The open source code is made available at https://github