Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Artificial behavioral agents are often evaluated based on their consistent behaviors and performance to take sequential actions in an enviro… (see more)nment to maximize some notion of cumulative reward. However, human decision making in real life usually involves different strategies and behavioral trajectories that lead to the same empirical outcome. Motivated by clinical literature of a wide range of neurological and psychiatric disorders, we propose here a more general and flexible parametric framework for sequential decision making that involves a two-stream reward processing mechanism. We demonstrated that this framework is flexible and unified enough to incorporate a family of problems spanning multi-armed bandits (MAB), contextual bandits (CB) and reinforcement learning (RL), which decompose the sequential decision making process in different levels. Inspired by the known reward processing abnormalities of many mental disorders, our clinically-inspired agents demonstrated interesting behavioral trajectories and comparable performance on simulated tasks with particular reward distributions, a real-world dataset capturing human decision-making in gambling tasks, and the PacMan game across different reward stationarities in a lifelong learning setting.
Unified Models of Human Behavioral Agents in Bandits, Contextual Bandits and RL
Drawing an inspiration from behavioral studies of human decision making, we propose here a more general and flexible parametric framework fo… (see more)r reinforcement learning that extends standard Q-learning to a two-stream model for processing positive and negative rewards, and allows to incorporate a wide range of reward-processing biases -- an important component of human decision making which can help us better understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems, as well as various neuropsychiatric conditions associated with disruptions in normal reward processing. From the computational perspective, we observe that the proposed Split-QL model and its clinically inspired variants consistently outperform standard Q-Learning and SARSA methods, as well as recently proposed Double Q-Learning approaches, on simulated tasks with particular reward distributions, a real-world dataset capturing human decision-making in gambling tasks, and the Pac-Man game in a lifelong learning setting across different reward stationarities.
Drawing an inspiration from behavioral studies of human decision making, we propose here a general parametric framework for a reinforcement … (see more)learning problem, which extends the standard Q-learning approach to incorporate a two-stream framework of reward processing with biases biologically associated with several neurological and psychiatric conditions, including Parkinson's and Alzheimer's diseases, attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain. For the AI community, the development of agents that react differently to different types of rewards can enable us to understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems. Empirically, the proposed model outperforms Q-Learning and Double Q-Learning in artificial scenarios with certain reward distributions and real-world human decision making gambling tasks. Moreover, from the behavioral modeling perspective, our parametric framework can be viewed as a first step towards a unifying computational model capturing reward processing abnormalities across multiple mental conditions and user preferences in long-term recommendation systems.