We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Causal representation learning has showed a variety of settings in which we can disentangle latent variables with identifiability guarantees… (see more) (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are represented as
Causal representation learning has showed a variety of settings in which we can disentangle latent variables with identifiability guarantees… (see more) (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are represented as
Agents with the ability to comprehend and reason about the dynamics of objects would be expected to exhibit improved robustness and generali… (see more)zation in novel scenarios. However, achieving this capability necessitates not only an effective scene representation but also an understanding of the mechanisms governing interactions among object subsets. Recent studies have made significant progress in representing scenes using object slots. In this work, we introduce Reusable Slotwise Mechanisms, or RSM, a framework that models object dynamics by leveraging communication among slots along with a modular architecture capable of dynamically selecting reusable mechanisms for predicting the future states of each object slot. Crucially, RSM leverages the Central Contextual Information (CCI), enabling selected mechanisms to access the remaining slots through a bottleneck, effectively allowing for modeling of higher order and complex interactions that might require a sparse subset of objects. Experimental results demonstrate the superior performance of RSM compared to state-of-the-art methods across various future prediction and related downstream tasks, including Visual Question Answering and action planning. Furthermore, we showcase RSM's Out-of-Distribution generalization ability to handle scenes in intricate scenarios.
There has been significant recent progress in causal representation learning that has showed a variety of settings in which we can disentang… (see more)le latent variables with identifiability guarantees (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are d − dimensional vectors, and (2) that the observations are the output of some injective observation function of these latent variables. While these assumptions appear benign—they amount to assuming that any changes in the latent space are reflected in the observation space, and that we can use standard encoders to infer the latent variables—we show that when the observations are of multiple objects, the observation function is no longer injective, and disentanglement fails in practice. We can address this failure by combining recent developments in object-centric learning and causal representation learning. By modifying the Slot Attention architecture (Locatello et al., 2020b), we develop an object-centric architecture that leverages weak supervision from sparse perturbations to disentangle each object’s properties. We argue that this approach is more data-efficient in the sense that it requires significantly fewer perturbations than a comparable approach that encodes to a Euclidean space and, we show that this approach successfully disentangles the properties of a set of objects in a series of simple image-based disentanglement experiments.