Portrait de Doina Precup

Doina Precup

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Chef d'équipe de recherche, Google DeepMind
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Modèles probabilistes
Modélisation moléculaire
Raisonnement

Biographie

Doina Precup enseigne à l'Université McGill tout en menant des recherches fondamentales sur l'apprentissage par renforcement, notamment les applications de l'IA dans des domaines ayant des répercussions sociales, tels que les soins de santé. Elle s'intéresse à la prise de décision automatique dans des situations d'incertitude élevée.

Elle est membre de l'Institut canadien de recherches avancées (CIFAR) et de l'Association pour l'avancement de l'intelligence artificielle (AAAI), et dirige le bureau montréalais de DeepMind.

Ses spécialités sont les suivantes : intelligence artificielle, apprentissage machine, apprentissage par renforcement, raisonnement et planification sous incertitude, applications.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Postdoctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Baccalauréat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :

Publications

Relative Trajectory Balance is equivalent to Trust-PCL
Capacity-Constrained Continual Learning
Zheng Wen
Benjamin Van Roy
Satinder Singh
Any agents we can possibly build are subject to capacity constraints, as memory and compute resources are inherently finite. However, compar… (voir plus)atively little attention has been dedicated to understanding how agents with limited capacity should allocate their resources for optimal performance. The goal of this paper is to shed some light on this question by studying a simple yet relevant continual learning problem: the capacity-constrained linear-quadratic-Gaussian (LQG) sequential prediction problem. We derive a solution to this problem under appropriate technical conditions. Moreover, for problems that can be decomposed into a set of sub-problems, we also demonstrate how to optimally allocate capacity across these sub-problems in the steady state. We view the results of this paper as a first step in the systematic theoretical study of learning under capacity constraints.
An Artificial Intelligence-Based Model to Predict Pregnancy After Intrauterine Insemination: A Retrospective Analysis of 9501 Cycles
Jaume Minano Masip
Camille Grysole
Penelope Borduas
Isaac-Jacques Kadoch
Simon Phillips
Daniel Dufort
Background/Objectives: Intrauterine insemination (IUI) is a common first-line approach in the treatment of numerous infertile couples, espec… (voir plus)ially in cases of unexplained infertility. Its relatively low success rate, however, could benefit from the development of AI-based support tools to predict its outcome, thus helping the clinical management of patients undergoing IUI cycles. Our objective was to develop a robust and accurate machine learning model that predicts pregnancy outcomes following IUI. Methods: A retrospective, observational, and single-center study was conducted. In total, 3535 couples (aged 18–43 years) that underwent IUI between January 2011 and December 2015 were recruited. Twenty-one clinical and laboratory parameters of 9501 IUI cycles were used to train different machine learning algorithms. Accuracy of pregnancy outcome was evaluated by an area under the curve (AUC) analysis. Results: The linear SVM outperformed AdaBoost, Kernel SVM, Random Forest, Extreme Forest, Bagging, and Voting classifiers. Pre-wash sperm concentration, the ovarian stimulation protocol, cycle length, and maternal age were strong predictors of a positive pregnancy test following IUI (AUC = 0.78). Paternal age was found to be the worst predictor. Conclusions: Our Linear SVM model predicts a positive pregnancy outcome following IUI. Although this model shows value for the clinical management of infertile patients and informed decision-making by the patients, further validation using independent datasets is required prior to clinical implementation.
An Artificial Intelligence-Based Model to Predict Pregnancy After Intrauterine Insemination: A Retrospective Analysis of 9501 Cycles
Jaume Minano Masip
Camille Grysole
Penelope Borduas
Isaac-Jacques Kadoch
Simon Phillips
Daniel Dufort
An Artificial Intelligence-Based Model to Predict Pregnancy After Intrauterine Insemination: A Retrospective Analysis of 9501 Cycles.
J. Minano Masip
Camille Grysole
Penelope Borduas
I. Kadoch
Simon Phillips
Daniel Dufort
Background/Objectives: Intrauterine insemination (IUI) is a common first-line approach in the treatment of numerous infertile couples, espec… (voir plus)ially in cases of unexplained infertility. Its relatively low success rate, however, could benefit from the development of AI-based support tools to predict its outcome, thus helping the clinical management of patients undergoing IUI cycles. Our objective was to develop a robust and accurate machine learning model that predicts pregnancy outcomes following IUI. Methods: A retrospective, observational, and single-center study was conducted. In total, 3535 couples (aged 18-43 years) that underwent IUI between January 2011 and December 2015 were recruited. Twenty-one clinical and laboratory parameters of 9501 IUI cycles were used to train different machine learning algorithms. Accuracy of pregnancy outcome was evaluated by an area under the curve (AUC) analysis. Results: The linear SVM outperformed AdaBoost, Kernel SVM, Random Forest, Extreme Forest, Bagging, and Voting classifiers. Pre-wash sperm concentration, the ovarian stimulation protocol, cycle length, and maternal age were strong predictors of a positive pregnancy test following IUI (AUC = 0.78). Paternal age was found to be the worst predictor. Conclusions: Our Linear SVM model predicts a positive pregnancy outcome following IUI. Although this model shows value for the clinical management of infertile patients and informed decision-making by the patients, further validation using independent datasets is required prior to clinical implementation.
An Artificial Intelligence-Based Model to Predict Pregnancy After Intrauterine Insemination: A Retrospective Analysis of 9501 Cycles
Jaume Minano Masip
Camille Grysole
Penelope Borduas
Isaac-Jacques Kadoch
Simon Phillips
Daniel Dufort
Exploring Sparse Adapters for Scalable Merging of Parameter Efficient Experts
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (voir plus)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Exploring Sparse Adapters for Scalable Merging of Parameter Efficient Experts
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (voir plus)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Language Agents Mirror Human Causal Reasoning Biases. How Can We Help Them Think Like Scientists?
Anthony GX-Chen
Rob Fergus
Kenneth Marino
Language model (LM) agents are increasingly used as autonomous decision-makers who need to actively gather information to guide their decisi… (voir plus)ons. A crucial cognitive skill for such agents is the efficient exploration and understanding of the causal structure of the world -- key to robust, scientifically grounded reasoning. Yet, it remains unclear whether LMs possess this capability or exhibit systematic biases leading to erroneous conclusions. In this work, we examine LMs' ability to explore and infer causal relationships, using the well-established"Blicket Test"paradigm from developmental psychology. We find that LMs reliably infer the common, intuitive disjunctive causal relationships but systematically struggle with the unusual, yet equally (or sometimes even more) evidenced conjunctive ones. This"disjunctive bias"persists across model families, sizes, and prompting strategies, and performance further declines as task complexity increases. Interestingly, an analogous bias appears in human adults, suggesting that LMs may have inherited deep-seated reasoning heuristics from their training data. To this end, we quantify similarities between LMs and humans, finding that LMs exhibit adult-like inference profiles (but not children-like). Finally, we propose a test-time sampling method which explicitly samples and eliminates hypotheses about causal relationships from the LM. This scalable approach significantly reduces the disjunctive bias and moves LMs closer to the goal of scientific, causally rigorous reasoning.
An Artificial Intelligence-Based Model to Predict Pregnancy After Intrauterine Insemination: A Retrospective Analysis of 9501 Cycles
J. Minano Masip
Camille Grysole
Penelope Borduas
I. Kadoch
Simon Phillips
Daniel Dufort
Background/Objectives: Intrauterine insemination (IUI) is a common first-line approach in the treatment of numerous infertile couples, espec… (voir plus)ially in cases of unexplained infertility. Its relatively low success rate, however, could benefit from the development of AI-based support tools to predict its outcome, thus helping the clinical management of patients undergoing IUI cycles. Our objective was to develop a robust and accurate machine learning model that predicts pregnancy outcomes following IUI. Methods: A retrospective, observational, and single-center study was conducted. In total, 3535 couples (aged 18–43 years) that underwent IUI between January 2011 and December 2015 were recruited. Twenty-one clinical and laboratory parameters of 9501 IUI cycles were used to train different machine learning algorithms. Accuracy of pregnancy outcome was evaluated by an area under the curve (AUC) analysis. Results: The linear SVM outperformed AdaBoost, Kernel SVM, Random Forest, Extreme Forest, Bagging, and Voting classifiers. Pre-wash sperm concentration, the ovarian stimulation protocol, cycle length, and maternal age were strong predictors of a positive pregnancy test following IUI (AUC = 0.78). Paternal age was found to be the worst predictor. Conclusions: Our Linear SVM model predicts a positive pregnancy outcome following IUI. Although this model shows value for the clinical management of infertile patients and informed decision-making by the patients, further validation using independent datasets is required prior to clinical implementation.
Capacity-Constrained Continual Learning
Zheng Wen
Benjamin Van Roy
Satinder Singh
Revisiting Laplacian Representations for Value Function Approximation in Deep RL
Proto-value functions (PVFs) introduced Laplacian embeddings as an effective feature basis for value-function approximation; however, their … (voir plus)utility remained limited to small, fully known state spaces. Recent work has scaled Laplacian embeddings to high-dimensional inputs, using them for reward shaping and option discovery in goal-directed tasks, yet only as auxiliary signals, rather than directly using them as features for value functions. In this paper, we learn Laplacian eigenvectors online and employ them as features for Q-learning in 23 Atari games. We empirically demonstrate that these online–learned embeddings substantially improve model-free RL in large, high-dimensional domains. We demonstrate that enriching state representations with action embeddings yields additional gains under both behavior-policy and uniform-random policies. Additionally, we introduce the Fusion architecture, which augments the representation with useful inductive bias at the embedding level. To assess the usefulness of each embedding used in the Fusion architecture, we use Shapley values analysis.