Portrait de Pierre-Luc Bacon

Pierre-Luc Bacon

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage par renforcement

Biographie

Pierre-Luc Bacon est professeur agrégé au Département d'informatique et de recherche opérationnelle de l'Université de Montréal. Il est également membre de Mila – Institut québécois d’intelligence artificielle et d’IVADO et titulaire d'une chaire Facebook-CIFAR. Il dirige un groupe de recherche qui travaille sur le défi posé par la malédiction de l'horizon dans l'apprentissage par renforcement et le contrôle optimal.

Étudiants actuels

Stagiaire de recherche - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - Polytechnique
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM

Publications

MaestroMotif: Skill Design from Artificial Intelligence Feedback
Martin Klissarov
Mikael Henaff
Roberta Raileanu
Shagun Sodhani
Amy Zhang
Marlos C. Machado
Pierluca D'Oro
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (voir plus) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Martin Klissarov
Mikael Henaff
Roberta Raileanu
Shagun Sodhani
Amy Zhang
Marlos C. Machado
Pierluca D'Oro
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (voir plus) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Martin Klissarov
Mikael Henaff
Roberta Raileanu
Shagun Sodhani
Amy Zhang
Marlos C. Machado
Pierluca D'Oro
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an… (voir plus) AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
Neural differential equations for temperature control in buildings under demand response programs
Vincent Taboga
Clement Gehring
Mathieu Le Cam
Neural differential equations for temperature control in buildings under demand response programs
Vincent Taboga
Clement Gehring
Mathieu Le Cam
Effects of Scale on Language Model Robustness
Nikolaus H. R. Howe
Ian R. McKenzie
Oskar John Hollinsworth
Michał Zając
Tom Tseng
Aaron David Tucker
Adam Gleave
Language models exhibit scaling laws, whereby increasing model and dataset size yields predictable decreases in negative log likelihood, unl… (voir plus)ocking a dazzling array of capabilities. This phenomenon spurs many companies to train ever larger models in pursuit of ever improved performance. Yet, these models are vulnerable to adversarial inputs such as ``jailbreaks'' and prompt injections that induce models to perform undesired behaviors, posing a growing risk as models become more capable. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically in the classification setting, finding that without explicit defense training, larger models tend to be modestly more robust on most tasks, though the effect is not reliable. Even with the advantage conferred by scale, undefended models remain easy to attack in absolute terms, and we thus turn our attention to explicitly training models for adversarial robustness, which we show to be a much more compute-efficient defense than scaling model size alone. In this setting, we also observe that adversarially trained larger models generalize faster and better to modified attacks not seen during training when compared with smaller models. Finally, we analyze the offense/defense balance of increasing compute, finding parity in some settings and an advantage for offense in others, suggesting that adversarial training alone is not sufficient to solve robustness, even at greater model scales.
Scaling Trends in Language Model Robustness
Nikolaus H. R. Howe
Ian R. McKenzie
Oskar John Hollinsworth
Michał Zając
Tom Tseng
Aaron David Tucker
Adam Gleave
Do Transformer World Models Give Better Policy Gradients?
Michel Ma
Tianwei Ni
Clement Gehring
Pierluca D'Oro
Exploring Scaling Trends in LLM Robustness
Nikolaus H. R. Howe
Michał Zając
Ian R. McKenzie
Oskar John Hollinsworth
Tom Tseng
Aaron David Tucker
Adam Gleave
Language model capabilities predictably improve from scaling a model's size and training data. Motivated by this, increasingly large languag… (voir plus)e models have been trained, yielding an array of impressive capabilities. Yet these models are vulnerable to adversarial prompts, such as"jailbreaks"that hijack models to perform undesired behaviors, posing a significant risk of misuse. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically, finding that larger models respond substantially better to adversarial training, but there is little to no benefit from model scale in the absence of explicit defenses.
Generative Active Learning for the Search of Small-molecule Protein Binders
Maksym Korablyov
Cheng-Hao Liu
Moksh J. Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Andrei Cristian Nica
Kostiantyn Lapchevskyi
Daniel St-Cyr
Doris Alexandra Schuetz
Victor I Butoi
Jarrid Rector-Brooks
Simon R. Blackburn
Leo Feng
Hadi Nekoei
Sai Krishna Gottipati
Priyesh Vijayan
Prateek Gupta
Ladislav Rampášek … (voir 14 de plus)
Sasikanth Avancha
William L. Hamilton
Brooks Paige
Sanchit Misra
Stanisław Jastrzębski
Bharat Kaul
José Miguel Hernández-Lobato
Marwin Segler
Michael M. Bronstein
Anne Marinier
Mike Tyers
Despite substantial progress in machine learning for scientific discovery in recent years, truly de novo design of small molecules which exh… (voir plus)ibit a property of interest remains a significant challenge. We introduce LambdaZero, a generative active learning approach to search for synthesizable molecules. Powered by deep reinforcement learning, LambdaZero learns to search over the vast space of molecules to discover candidates with a desired property. We apply LambdaZero with molecular docking to design novel small molecules that inhibit the enzyme soluble Epoxide Hydrolase 2 (sEH), while enforcing constraints on synthesizability and drug-likeliness. LambdaZero provides an exponential speedup in terms of the number of calls to the expensive molecular docking oracle, and LambdaZero de novo designed molecules reach docking scores that would otherwise require the virtual screening of a hundred billion molecules. Importantly, LambdaZero discovers novel scaffolds of synthesizable, drug-like inhibitors for sEH. In in vitro experimental validation, a series of ligands from a generated quinazoline-based scaffold were synthesized, and the lead inhibitor N-(4,6-di(pyrrolidin-1-yl)quinazolin-2-yl)-N-methylbenzamide (UM0152893) displayed sub-micromolar enzyme inhibition of sEH.
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan SeyedSalehi
Michel Ma
Clement Gehring
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (voir plus)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan SeyedSalehi
Michel Ma
Clement Gehring
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (voir plus)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.