Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Most refrigerants currently used in air-conditioning systems, such as hydrofluorocarbons, are potent greenhouse gases and are being phased d… (voir plus)own. Large-scale molecular screening has been applied to the search for alternatives, but in practice only about 300 refrigerants are known, and only a few additional candidates have been suggested without experimental validation. This scarcity of reliable data limits the effectiveness of purely data-driven methods. We present Refgen, a generative pipeline that integrates machine learning with physics-grounded inductive biases. Alongside fine-tuning for valid molecular generation, Refgen incorporates predictive models for critical properties, equations of state, thermochemical polynomials, and full vapor compression cycle simulations. These models enable reinforcement learning fine-tuning under thermodynamic constraints, enforcing consistency and guiding discovery toward molecules that balance efficiency, safety, and environmental impact. By embedding physics into the learning process, Refgen leverages scarce data effectively and enables de novo refrigerant discovery beyond the known set of compounds.
Most refrigerants currently used in air-conditioning systems, such as hydrofluorocarbons, are potent greenhouse gases and are being phased d… (voir plus)own. Large-scale molecular screening has been applied to the search for alternatives, but in practice only about 300 refrigerants are known, and only a few additional candidates have been suggested without experimental validation. This scarcity of reliable data limits the effectiveness of purely data-driven methods. We present Refgen, a generative pipeline that integrates machine learning with physics-grounded inductive biases. Alongside fine-tuning for valid molecular generation, Refgen incorporates predictive models for critical properties, equations of state, thermochemical polynomials, and full vapor compression cycle simulations. These models enable reinforcement learning fine-tuning under thermodynamic constraints, enforcing consistency and guiding discovery toward molecules that balance efficiency, safety, and environmental impact. By embedding physics into the learning process, Refgen leverages scarce data effectively and enables de novo refrigerant discovery beyond the known set of compounds.