Portrait de Irina Rish

Irina Rish

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage en ligne
Apprentissage multimodal
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Neurosciences computationnelles
Traitement du langage naturel

Biographie

Irina Rish est professeure titulaire à l'Université de Montréal (UdeM), où elle dirige le Laboratoire d'IA autonome. Membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, elle est titulaire d'une chaire d'excellence en recherche du Canada (CERC) et d'une chaire en IA Canada-CIFAR. Irina dirige le projet INCITE du ministère américain de l'Environnement au sujet des modèles de fondation évolutifs sur les superordinateurs Summit et Frontier à l'Oak Ridge Leadership Computing Facility (OLCF). Elle est cofondatrice et directrice scientifique de Nolano.ai.

Ses recherches actuelles portent sur les lois de mise à l'échelle neuronale et les comportements émergents (capacités et alignement) dans les modèles de fondation, ainsi que sur l'apprentissage continu, la généralisation hors distribution et la robustesse. Avant de se joindre à l'UdeM en 2019, Irina était chercheuse au Centre de recherche IBM Thomas J. Watson, où elle a travaillé sur divers projets à l'intersection des neurosciences et de l'IA, et dirigé le défi NeuroAI. Elle a reçu plusieurs prix IBM : ceux de l’excellence et de l’innovation exceptionnelle (2018), celui de la réalisation technique exceptionnelle (2017), et celui de l’accomplissement en recherche (2009). Elle détient 64 brevets et a écrit plus de 120 articles de recherche, plusieurs chapitres de livres, trois livres publiés et une monographie sur la modélisation éparse.

Étudiants actuels

Stagiaire de recherche
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - -
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM

Publications

Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference
Matthew D Riemer
Ignacio Cases
Robert Ajemian
Miao Liu
Yuhai Tu
Gerald Tesauro
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neura… (voir plus)l network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
Machine Learning and Interpretation in Neuroimaging
Georg Langs
Leila Wehbe
Guillermo Cecchi
Kai-min Kevin Chang
Brian G Murphy
Cognitive Models as Simulators: Using Cognitive Models to Tap into Implicit Human Feedback
Ardavan S Nobandegani
Thomas R. Shultz
In this work, we substantiate the idea of cognitive models as simulators , which is to have AI systems interact with, and collect feedback f… (voir plus)rom, cognitive models instead of humans, thereby making the training process safer, cheaper, and faster. We leverage this idea in the context of learning a fair behavior toward a counterpart exhibiting various emotional states — as implicit human feedback. As a case study, we adopt the Ultima-tum game (UG), a canonical task in behavioral and brain sciences for studying fairness. We show that our reinforcement learning (RL) agents learn to exhibit differential, rationally-justified behaviors under various emotional states of their UG counterpart. We discuss the implications of our work for AI and cognitive science research, and its potential for interactive learning with implicit human feedback.