Portrait de Chris Pal

Chris Pal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Polytechnique Montréal, Département de génie informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Christopher Pal est titulaire d'une chaire en IA Canada-CIFAR, professeur titulaire à Polytechnique Montréal et professeur adjoint au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il est également chercheur émérite à ServiceNow Research. Il est engagé dans la recherche sur l'intelligence artificielle et l'apprentissage automatique depuis plus de 25 ans, publiant souvent des travaux sur les méthodes de modélisation du langage à grande échelle et les techniques de modélisation générative. Il a obtenu un doctorat en informatique à l'Université de Waterloo.

Étudiants actuels

Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Maîtrise recherche - UdeM
Maîtrise recherche - Polytechnique
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Polytechnique
Doctorat - Polytechnique
Maîtrise recherche - Polytechnique
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - Polytechnique
Postdoctorat - UdeM
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - Polytechnique

Publications

Controllable Image Generation via Collage Representations
Arantxa Casanova
Marlene Careil
Jakob Verbeek
Michal Drozdzal
Conservative objective models are a special kind of contrastive divergence-based energy model
Christopher Beckham
In this work we theoretically show that conservative objective models (COMs) for offline model-based optimisation (MBO) are a special kind o… (voir plus)f contrastive divergence-based energy model, one where the energy function represents both the unconditional probability of the input and the conditional probability of the reward variable. While the initial formulation only samples modes from its learned distribution, we propose a simple fix that replaces its gradient ascent sampler with a Langevin MCMC sampler. This gives rise to a special probabilistic model where the probability of sampling an input is proportional to its predicted reward. Lastly, we show that better samples can be obtained if the model is decoupled so that the unconditional and conditional probabilities are modelled separately.
Visual Question Answering From Another Perspective: CLEVR Mental Rotation Tests
Christopher Beckham
Martin Weiss
Florian Golemo
Sina Honari
Proactive Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
andrew williams
Victor Schmidt
Pierre-Luc St-Charles
Akshay Patel
Yang Zhang
Bernhard Schölkopf
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
R. Baptista
Christopher Beckham
Kamyar Azizzadenesheli
Jean Kossaifi
Vikram Voleti
Jiaming Song
Karsten Kreis
Jan Kautz
Arash Vahdat
Animashree Anandkumar
Language Decision Transformers with Exponential Tilt for Interactive Text Environments
Nicolas Gontier
Pau Rodriguez
Issam Hadj Laradji
David Vazquez
ArK: Augmented Reality with Knowledge Emergent Infrastructure
Qiuyuan Huang
J. Park
Abhinav Gupta
Pan Lu
Paul N. Bennett
Ran Gong
Subhojit Som
Baolin Peng
Owais Khan Mohammed
Yejin Choi
Jianfeng Gao
Despite the growing adoption of mixed reality and interactive AI, it remains challenging to generate high-quality 2D/3D scenes in unseen env… (voir plus)ironments. Typically, an AI agent requires collecting extensive training data for every new task, which can be costly or impossible for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g., GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in physical or virtual worlds. Central to our approach is the interactive emerging mechanism, dubbed Augmented Reality with Knowledge Emergent Infrastructure (ArK) , which leverages knowledge-memory to generate scenes in unseen physical worlds and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated through i) micro-action of cross-modality : in multi-modality models to collect a large amount of relevant knowledge-memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic : in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate ArK’s effectiveness in scene generation and editing tasks and show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, highlighting its potential in applications such as metaverse and gaming simulation.
Block-State Transformers
Mahan Fathi
Jonathan Pilault
Orhan Firat
Ross Goroshin
Towards Learning to Imitate from a Single Video Demonstration
Florian Golemo
Agents that can learn to imitate given video observation -- \emph{without direct access to state or action information} are more applicable … (voir plus)to learning in the natural world. However, formulating a reinforcement learning (RL) agent that facilitates this goal remains a significant challenge. We approach this challenge using contrastive training to learn a reward function comparing an agent's behaviour with a single demonstration. We use a Siamese recurrent neural network architecture to learn rewards in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we also find that the inclusion of multi-task data and additional image encoding losses improve the temporal consistency of the learned rewards and, as a result, significantly improves policy learning. We demonstrate our approach on simulated humanoid, dog, and raptor agents in 2D and a quadruped and a humanoid in 3D. We show that our method outperforms current state-of-the-art techniques in these environments and can learn to imitate from a single video demonstration.
Workflow Discovery from Dialogues in the Low Data Regime
Amine El hattami
Stefania Raimondo
Issam Hadj Laradji
David Vazquez
Pau Rodriguez
Text-based dialogues are now widely used to solve real-world problems. In cases where solution strategies are already known, they can someti… (voir plus)mes be codified into workflows and used to guide humans or artificial agents through the task of helping clients. We introduce a new problem formulation that we call Workflow Discovery (WD) in which we are interested in the situation where a formal workflow may not yet exist. Still, we wish to discover the set of actions that have been taken to resolve a particular problem. We also examine a sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD). Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our ability to extract such workflows using ground truth sequences of actions. We propose and evaluate an approach that conditions models on the set of possible actions, and we show that using this strategy, we can improve WD performance. Our conditioning approach also improves zero-shot and few-shot WD performance when transferring learned models to unseen domains within and across datasets. Further, on ABCD a modified variant of our Seq2Seq method achieves state-of-the-art performance on related but different problems of Action State Tracking (AST) and Cascading Dialogue Success (CDS) across many evaluation metrics.
Implicit Offline Reinforcement Learning via Supervised Learning
Alexandre Piché
Rafael Pardinas
David Vazquez
Igor Mordatch
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset of varied b… (voir plus)ehaviors. It is as simple as supervised learning and Behavior Cloning (BC) but takes advantage of the return information. On BC tasks, implicit models have been shown to match or outperform explicit ones. Despite the benefits of using implicit models to learn robotic skills via BC, Offline RL via Supervised Learning algorithms have been limited to explicit models. We show how implicit models leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets. Furthermore, we show how closely related our implicit methods are to other popular RL via Supervised Learning algorithms.
SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows
Vikram Voleti
Boris Oreshkin
Florent Bocquelet
Félix Harvey
Louis-Simon Ménard