Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Postdoctorate - HEC Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
Postdoctorate - Université de Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Co-supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Polytechnique Montréal

Publications

Block-State Transformers
Mahan Fathi
Jonathan Pilault
Orhan Firat
Ross Goroshin
Towards Learning to Imitate from a Single Video Demonstration
Florian Golemo
Agents that can learn to imitate given video observation -- \emph{without direct access to state or action information} are more applicable … (see more)to learning in the natural world. However, formulating a reinforcement learning (RL) agent that facilitates this goal remains a significant challenge. We approach this challenge using contrastive training to learn a reward function comparing an agent's behaviour with a single demonstration. We use a Siamese recurrent neural network architecture to learn rewards in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we also find that the inclusion of multi-task data and additional image encoding losses improve the temporal consistency of the learned rewards and, as a result, significantly improves policy learning. We demonstrate our approach on simulated humanoid, dog, and raptor agents in 2D and a quadruped and a humanoid in 3D. We show that our method outperforms current state-of-the-art techniques in these environments and can learn to imitate from a single video demonstration.
Workflow Discovery from Dialogues in the Low Data Regime
Amine El hattami
Stefania Raimondo
Issam Hadj Laradji
David Vazquez
Pau Rodriguez
Text-based dialogues are now widely used to solve real-world problems. In cases where solution strategies are already known, they can someti… (see more)mes be codified into workflows and used to guide humans or artificial agents through the task of helping clients. We introduce a new problem formulation that we call Workflow Discovery (WD) in which we are interested in the situation where a formal workflow may not yet exist. Still, we wish to discover the set of actions that have been taken to resolve a particular problem. We also examine a sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD). Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our ability to extract such workflows using ground truth sequences of actions. We propose and evaluate an approach that conditions models on the set of possible actions, and we show that using this strategy, we can improve WD performance. Our conditioning approach also improves zero-shot and few-shot WD performance when transferring learned models to unseen domains within and across datasets. Further, on ABCD a modified variant of our Seq2Seq method achieves state-of-the-art performance on related but different problems of Action State Tracking (AST) and Cascading Dialogue Success (CDS) across many evaluation metrics.
Implicit Offline Reinforcement Learning via Supervised Learning
Alexandre Piché
Rafael Pardinas
David Vazquez
Igor Mordatch
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset of varied b… (see more)ehaviors. It is as simple as supervised learning and Behavior Cloning (BC) but takes advantage of the return information. On BC tasks, implicit models have been shown to match or outperform explicit ones. Despite the benefits of using implicit models to learn robotic skills via BC, Offline RL via Supervised Learning algorithms have been limited to explicit models. We show how implicit models leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets. Furthermore, we show how closely related our implicit methods are to other popular RL via Supervised Learning algorithms.
SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic Workflows
Vikram Voleti
Boris Oreshkin
Florent Bocquelet
Félix Harvey
Louis-Simon Ménard
Does Entity Abstraction Help Generative Transformers Reason?
Nicolas Gontier
We study the utility of incorporating entity type abstractions into pre-trained Transformers and test these methods on four NLP tasks requir… (see more)ing different forms of logical reasoning: (1) compositional language understanding with text-based relational reasoning (CLUTRR), (2) abductive reasoning (ProofWriter), (3) multi-hop question answering (HotpotQA), and (4) conversational question answering (CoQA). We propose and empirically explore three ways to add such abstraction: (i) as additional input embeddings, (ii) as a separate sequence to encode, and (iii) as an auxiliary prediction task for the model. Overall, our analysis demonstrates that models with abstract entity knowledge performs better than without it. The best abstraction aware models achieved an overall accuracy of 88.8% and 91.8% compared to the baseline model achieving 62.9% and 89.8% on CLUTRR and ProofWriter respectively. However, for HotpotQA and CoQA, we find that F1 scores improve by only 0.5% on average. Our results suggest that the benefit of explicit abstraction is significant in formally defined logical reasoning settings requiring many reasoning hops, but point to the notion that it is less beneficial for NLP tasks having less formal logical structure.
MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation
Vikram Voleti
Alexia Jolicoeur-Martineau
Video prediction is a challenging task. The quality of video frames from current state-of-the-art (SOTA) generative models tends to be poor … (see more)and generalization beyond the training data is difficult. Furthermore, existing prediction frameworks are typically not capable of simultaneously handling other video-related tasks such as unconditional generation or interpolation. In this work, we devise a general-purpose framework called Masked Conditional Video Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional score-based denoising diffusion model, conditioned on past and/or future frames. We train the model in a manner where we randomly and independently mask all the past frames or all the future frames. This novel but straightforward setup allows us to train a single model that is capable of executing a broad range of video tasks, specifically: future/past prediction -- when only future/past frames are masked; unconditional generation -- when both past and future frames are masked; and interpolation -- when neither past nor future frames are masked. Our experiments show that this approach can generate high-quality frames for diverse types of videos. Our MCVD models are built from simple non-recurrent 2D-convolutional architectures, conditioning on blocks of frames and generating blocks of frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our approach yields SOTA results across standard video prediction and interpolation benchmarks, with computation times for training models measured in 1-12 days using
From Machine Learning to Robotics: Challenges and Opportunities for Embodied Intelligence
Nicholas Roy
Ingmar Posner
T. Barfoot
Philippe Beaudoin
Jeannette Bohg
Oliver Brock
Isabelle Depatie
Dieter Fox
D. Koditschek
Tom'as Lozano-p'erez
Vikash K. Mansinghka
Dorsa Sadigh
Stefan Schaal
G. Sukhatme
Denis Therien
Marc Emile Toussaint
Michiel van de Panne
Predicting Infectiousness for Proactive Contact Tracing
Prateek Gupta
Nasim Rahaman
Martin Weiss
Tristan Deleu
Meng Qu
Victor Schmidt
Pierre-Luc St-Charles
Hannah Alsdurf
Olexa Bilaniuk
gaetan caron
pierre luc carrier
Joumana Ghosn
satya ortiz gagne
Bernhard Schölkopf … (see 3 more)
abhinav sharma
andrew williams
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdo… (see more)wns for emergency containment. Large-scale digital contact tracing (DCT) has emerged as a potential solution to resume economic and social activity while minimizing spread of the virus. Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or pre-existing medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). We find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe re-opening and second-wave prevention.
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
Justin Szeto
Naz Sepah
Edward Raff
Kanika Madan
Vikram Voleti
Vincent Michalski
Dmitriy Serdyuk
Gael Varoquaux
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
abhinav sharma
Nanor Minoyan
Soren Harnois-Leblanc
Victor Schmidt
Pierre-Luc St-Charles
Tristan Deleu
andrew williams
Akshay Patel
Meng Qu
Olexa Bilaniuk
gaetan caron
pierre luc carrier
satya ortiz gagne
Marc-Andre Rousseau
Joumana Ghosn
Yang Zhang
Bernhard Schölkopf
Joanna Merckx
Medical Imaging with Deep Learning: MIDL 2020 - Short Paper Track
Ismail Ben Ayed
Marleen de Bruijne
Maxime Descoteaux
This compendium gathers all the accepted extended abstracts from the Third International Conference on Medical Imaging with Deep Learning (M… (see more)IDL 2020), held in Montreal, Canada, 6-9 July 2020. Note that only accepted extended abstracts are listed here, the Proceedings of the MIDL 2020 Full Paper Track are published in the Proceedings of Machine Learning Research (PMLR).