Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Research Intern - McGill University
Postdoctorate - HEC Montréal
Principal supervisor :
Collaborating researcher - McGill University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Polytechnique Montréal
PhD - Polytechnique Montréal
Postdoctorate - McGill University
Co-supervisor :
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Polytechnique Montréal

Publications

RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro
Pierre-Andre Noel
Étienne Marcotte
Sai Rajeswar
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includ… (see more)es encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
Exploring validation metrics for offline model-based optimisation with diffusion models
Christopher Beckham
Alexandre Piché
David Vazquez
Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
Ge Ya Luo
Zhi Hao Luo
Anthony Gosselin
Alexia Jolicoeur-Martineau
With recent advances in video prediction, controllable video generation has been attracting more attention. Generating high fidelity videos … (see more)according to simple and flexible conditioning is of particular interest. To this end, we propose a controllable video generation model using pixel level renderings of 2D or 3D bounding boxes as conditioning. In addition, we also create a bounding box predictor that, given the initial and ending frames' bounding boxes, can predict up to 15 bounding boxes per frame for all the frames in a 25-frame clip. We perform experiments across 3 well-known AV video datasets: KITTI, Virtual-KITTI 2 and BDD100k.
Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
Ge Ya Luo
Zhi Hao Luo
Anthony Gosselin
Alexia Jolicoeur-Martineau
Controllable video generation has attracted significant attention, largely due to advances in video diffusion models. In domains such as aut… (see more)onomous driving, it is essential to develop highly accurate predictions for object motions. This paper tackles a crucial challenge of how to exert precise control over object motion for realistic video synthesis. To accomplish this, we 1) control object movements using bounding boxes and extend this control to the renderings of 2D or 3D boxes in pixel space, 2) employ a distinct, specialized model to forecast the trajectories of object bounding boxes based on their previous and, if desired, future positions, and 3) adapt and enhance a separate video diffusion network to create video content based on these high quality trajectory forecasts. Our method, Ctrl-V, leverages modified and fine-tuned Stable Video Diffusion (SVD) models to solve both trajectory and video generation. Extensive experiments conducted on the KITTI, Virtual-KITTI 2, BDD100k, and nuScenes datasets validate the effectiveness of our approach in producing realistic and controllable video generation.
LLMs can learn self-restraint through iterative self-reflection
Alexandre Piché
Aristides Milios
In order to be deployed safely, Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of … (see more)knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood, which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a utility function that can encourage the model to produce responses only when it is confident in them. This utility function can be used to score generation of different length and abstention. To optimize this function, we introduce ReSearch, a process of"self-reflection"consisting of iterative self-prompting and self-evaluation. We use the ReSearch algorithm to generate synthetic data on which we finetune our models. Compared to their original versions, our resulting models generate fewer \emph{hallucinations} overall at no additional inference cost, for both known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to abstain by augmenting the samples generated by the model during the search procedure with an answer expressing abstention.
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
Jo˜ao Monteiro
Étienne Marcotte
Pierre-Andre Noel
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference informati… (see more)on. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
Jo˜ao Monteiro
Étienne Marcotte
Pierre-Andre Noel
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference informati… (see more)on. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
Luke Rowe
Roger Girgis
Anthony Gosselin
Bruno Carrez
Florian Golemo
Felix Heide
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data are not reactive and hard to intuitively control. Existing approaches address these challenges by proposing methods that rely on heuristics or generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through a physics-enhanced Nocturne simulator to generate a diverse offline RL dataset, annotated with various rewards. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including adversarial behaviours. We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.
Language Models Can Reduce Asymmetry in Information Markets
Nasim Rahaman
Martin Weiss
Manuel Wüthrich
Erran L. Li
Bernhard Schölkopf
Language Models Can Reduce Asymmetry in Information Markets
Nasim Rahaman
Martin Weiss
Manuel Wüthrich
Erran L. Li
Bernhard Schölkopf
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determi… (see more)ne its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.
Language Models Can Reduce Asymmetry in Information Markets
Nasim Rahaman
Martin Weiss
Manuel Wüthrich
Erran L. Li
Bernhard Schölkopf
This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determi… (see more)ne its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.
Multi-Resolution Continuous Normalizing Flows
Vikram Voleti
Chris Finlay