Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Postdoctorate - HEC Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
Postdoctorate - Université de Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Polytechnique Montréal

Publications

XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
Jo˜ao Monteiro
Étienne Marcotte
Pierre-Andre Noel
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
In-context learning (ICL) approaches typically leverage prompting to condition decoder-only language model generation on reference informati… (see more)on. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context isn't known in advance, caching ICL can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform ICL, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude.
Language Models Can Reduce Asymmetry in Information Markets
Nasim Rahaman
Martin Weiss
Manuel Wüthrich
Erran L. Li
Bernhard Schölkopf
Multi-Resolution Continuous Normalizing Flows
Vikram Voleti
Chris Finlay
IntentGPT: Few-shot Intent Discovery with Large Language Models
Juan A. Rodriguez
Nicholas Botzer
David Vazquez
Marco Pedersoli
Issam Hadj Laradji
Self-evaluation and self-prompting to improve the reliability of LLMs
Alexandre Piché
Aristides Milios
In order to safely deploy Large Language Models (LLMs), they must be capable of dynamically adapting their behavior based on their level of … (see more)knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a simple objective that can encourage the model to produce generation that the model is confident in. To optimize this objective, we introduce ReSearch, an iterative search algorithm based on self-evaluation and self-prompting. Our method results in fewer hallucinations overall, both for known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to decline, when the model assesses that it cannot provide a response without a high proportion of hallucination.
Self-evaluation and self-prompting to improve the reliability of LLMs
Alexandre Piché
Aristides Milios
In order to safely deploy Large Language Models (LLMs), they must be capable of dynamically adapting their behavior based on their level of … (see more)knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a simple objective that can encourage the model to produce generation that the model is confident in. To optimize this objective, we introduce ReSearch, an iterative search algorithm based on self-evaluation and self-prompting. Our method results in fewer hallucinations overall, both for known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to decline, when the model assesses that it cannot provide a response without a high proportion of hallucination.
LitLLM: A Toolkit for Scientific Literature Review
Shubham Agarwal
Issam Hadj Laradji
Conducting literature reviews for scientific papers is essential for understanding research, its limitations, and building on existing work.… (see more) It is a tedious task which makes an automatic literature review generator appealing. Unfortunately, many existing works that generate such reviews using Large Language Models (LLMs) have significant limitations. They tend to hallucinate-generate non-actual information-and ignore the latest research they have not been trained on. To address these limitations, we propose a toolkit that operates on Retrieval Augmented Generation (RAG) principles, specialized prompting and instructing techniques with the help of LLMs. Our system first initiates a web search to retrieve relevant papers by summarizing user-provided abstracts into keywords using an off-the-shelf LLM. Authors can enhance the search by supplementing it with relevant papers or keywords, contributing to a tailored retrieval process. Second, the system re-ranks the retrieved papers based on the user-provided abstract. Finally, the related work section is generated based on the re-ranked results and the abstract. There is a substantial reduction in time and effort for literature review compared to traditional methods, establishing our toolkit as an efficient alternative. Our open-source toolkit is accessible at https://github.com/shubhamagarwal92/LitLLM and Huggingface space (https://huggingface.co/spaces/shubhamagarwal92/LitLLM) with the video demo at https://youtu.be/E2ggOZBAFw0.
Würstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models
Pablo Pernias
Dominic Rampas
Mats Leon Richter
Marc Aubreville
Exploring validation metrics for offline model-based optimisation
Christopher Beckham
Alexandre Piché
David Vazquez
In offline model-based optimisation (MBO) we are interested in using machine learning to de-sign candidates that maximise some measure of d… (see more)esirability through an expensive but real-world scoring process. Offline MBO tries to approximate this expensive scoring function and use that to evaluate generated designs, however evaluation is non-exact because one approximation is being evaluated with another. Instead, we ask ourselves: if we did have the real world scoring function at hand, what cheap-to-compute validation metrics would correlate best with this? Since the real-world scoring function is available for simulated MBO datasets, insights obtained from this can be transferred over to real-world offline MBO tasks where the real-world scoring function is expensive to compute. To address this, we propose a conceptual evaluation framework that is amenable to measuring extrapolation, and apply this to conditional denoising diffusion models. Empirically, we find that two validation metrics – agreement and Frechet distance – correlate quite well with the ground truth. When there is high variability in conditional generation, feedback is required in the form of an approximated version of the real-world scoring function. Furthermore, we find that generating high-scoring samples may require heavily weighting the generative model in favour of sample quality, potentially at the cost of sample diversity.
Reinforcement Learning for Blind Stair Climbing with Legged and Wheeled-Legged Robots
Simon Chamorro
Victor Klemm
Miguel de La Iglesia Valls
Roland Siegwart
Würstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models
Pablo Pernias
Dominic Rampas
Mats Leon Richter
Marc Aubreville
Capture the Flag: Uncovering Data Insights with Large Language Models
Issam Hadj Laradji
Perouz Taslakian
Sai Rajeswar
Valentina Zantedeschi
Alexandre Lacoste
David Vazquez
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. Howev… (see more)er, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a"capture the flag"principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.