Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Research Intern - Formerly McGill University (but ending)
Postdoctorate - HEC Montréal
Principal supervisor :
Collaborating researcher - McGill University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Collaborating Alumni - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Polytechnique Montréal
PhD - Polytechnique Montréal
Postdoctorate - McGill University
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
Collaborating researcher - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - HEC Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Polytechnique Montréal
PhD - Université de Montréal

Publications

ParetoFlow: Guided Flows in Multi-Objective Optimization
In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minim… (see more)ize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
ParetoFlow: Guided Flows in Multi-Objective Optimization
In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minim… (see more)ize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
IntentGPT: Few-shot Intent Discovery with Large Language Models
Juan A. Rodriguez
Nicholas Botzer
David Vazquez
Issam Hadj Laradji
In today's digitally driven world, dialogue systems play a pivotal role in enhancing user interactions, from customer service to virtual ass… (see more)istants. In these dialogues, it is important to identify user's goals automatically to resolve their needs promptly. This has necessitated the integration of models that perform Intent Detection. However, users' intents are diverse and dynamic, making it challenging to maintain a fixed set of predefined intents. As a result, a more practical approach is to develop a model capable of identifying new intents as they emerge. We address the challenge of Intent Discovery, an area that has drawn significant attention in recent research efforts. Existing methods need to train on a substantial amount of data for correctly identifying new intents, demanding significant human effort. To overcome this, we introduce IntentGPT, a novel training-free method that effectively prompts Large Language Models (LLMs) such as GPT-4 to discover new intents with minimal labeled data. IntentGPT comprises an \textit{In-Context Prompt Generator}, which generates informative prompts for In-Context Learning, an \textit{Intent Predictor} for classifying and discovering user intents from utterances, and a \textit{Semantic Few-Shot Sampler} that selects relevant few-shot examples and a set of known intents to be injected into the prompt. Our experiments show that IntentGPT outperforms previous methods that require extensive domain-specific data and fine-tuning, in popular benchmarks, including CLINC and BANKING, among others.
IntentGPT: Few-shot Intent Discovery with Large Language Models
Juan A. Rodriguez
Nicholas Botzer
David Vazquez
Issam Hadj Laradji
In today's digitally driven world, dialogue systems play a pivotal role in enhancing user interactions, from customer service to virtual ass… (see more)istants. In these dialogues, it is important to identify user's goals automatically to resolve their needs promptly. This has necessitated the integration of models that perform Intent Detection. However, users' intents are diverse and dynamic, making it challenging to maintain a fixed set of predefined intents. As a result, a more practical approach is to develop a model capable of identifying new intents as they emerge. We address the challenge of Intent Discovery, an area that has drawn significant attention in recent research efforts. Existing methods need to train on a substantial amount of data for correctly identifying new intents, demanding significant human effort. To overcome this, we introduce IntentGPT, a novel training-free method that effectively prompts Large Language Models (LLMs) such as GPT-4 to discover new intents with minimal labeled data. IntentGPT comprises an \textit{In-Context Prompt Generator}, which generates informative prompts for In-Context Learning, an \textit{Intent Predictor} for classifying and discovering user intents from utterances, and a \textit{Semantic Few-Shot Sampler} that selects relevant few-shot examples and a set of known intents to be injected into the prompt. Our experiments show that IntentGPT outperforms previous methods that require extensive domain-specific data and fine-tuning, in popular benchmarks, including CLINC and BANKING, among others.
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Abhay Puri
Akshay Kalkunte Suresh
François Savard
Amirhossein Abaskohi
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Sanket Biswas … (see 23 more)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Beyond FVD: Enhanced Evaluation Metrics for Video Generation Quality
Ge Ya Luo
Gian Mario Favero
Zhi Hao Luo
The Fr\'echet Video Distance (FVD) is a widely adopted metric for evaluating video generation distribution quality. However, its effectivene… (see more)ss relies on critical assumptions. Our analysis reveals three significant limitations: (1) the non-Gaussianity of the Inflated 3D Convnet (I3D) feature space; (2) the insensitivity of I3D features to temporal distortions; (3) the impractical sample sizes required for reliable estimation. These findings undermine FVD's reliability and show that FVD falls short as a standalone metric for video generation evaluation. After extensive analysis of a wide range of metrics and backbone architectures, we propose JEDi, the JEPA Embedding Distance, based on features derived from a Joint Embedding Predictive Architecture, measured using Maximum Mean Discrepancy with polynomial kernel. Our experiments on multiple open-source datasets show clear evidence that it is a superior alternative to the widely used FVD metric, requiring only 16% of the samples to reach its steady value, while increasing alignment with human evaluation by 34%, on average.
Beyond FVD: Enhanced Evaluation Metrics for Video Generation Quality
The Fr\'echet Video Distance (FVD) is a widely adopted metric for evaluating video generation distribution quality. However, its effectivene… (see more)ss relies on critical assumptions. Our analysis reveals three significant limitations: (1) the non-Gaussianity of the Inflated 3D Convnet (I3D) feature space; (2) the insensitivity of I3D features to temporal distortions; (3) the impractical sample sizes required for reliable estimation. These findings undermine FVD's reliability and show that FVD falls short as a standalone metric for video generation evaluation. After extensive analysis of a wide range of metrics and backbone architectures, we propose JEDi, the JEPA Embedding Distance, based on features derived from a Joint Embedding Predictive Architecture, measured using Maximum Mean Discrepancy with polynomial kernel. Our experiments on multiple open-source datasets show clear evidence that it is a superior alternative to the widely used FVD metric, requiring only 16% of the samples to reach its steady value, while increasing alignment with human evaluation by 34%, on average.
Robust Guided Diffusion for Offline Black-Box Optimization
Can Chen
Christopher Beckham
Zixuan Liu
Offline black-box optimization aims to maximize a black-box function using an offline dataset of designs and their measured properties. Two … (see more)main approaches have emerged: the forward approach, which learns a mapping from input to its value, thereby acting as a proxy to guide optimization, and the inverse approach, which learns a mapping from value to input for conditional generation. (a) Although proxy-free~(classifier-free) diffusion shows promise in robustly modeling the inverse mapping, it lacks explicit guidance from proxies, essential for generating high-performance samples beyond the training distribution. Therefore, we propose \textit{proxy-enhanced sampling} which utilizes the explicit guidance from a trained proxy to bolster proxy-free diffusion with enhanced sampling control. (b) Yet, the trained proxy is susceptible to out-of-distribution issues. To address this, we devise the module \textit{diffusion-based proxy refinement}, which seamlessly integrates insights from proxy-free diffusion back into the proxy for refinement. To sum up, we propose \textit{\textbf{R}obust \textbf{G}uided \textbf{D}iffusion for Offline Black-box Optimization}~(\textbf{RGD}), combining the advantages of proxy~(explicit guidance) and proxy-free diffusion~(robustness) for effective conditional generation. RGD achieves state-of-the-art results on various design-bench tasks, underscoring its efficacy. Our code is at https://github.com/GGchen1997/RGD.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulation
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro
Pierre-Andre Noel
Étienne Marcotte
Sai Rajeswar
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includ… (see more)es encyclopedic documents that harbor a vast amount of general knowledge (*e.g.*, Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (*e.g.*, a news article) absent from the internet; (2) a question about the document’s topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data do not react to the actions of the AV, and their behaviour cannot be easily controlled to simulate counterfactual scenarios. Existing approaches have attempted to address these shortcomings by proposing methods that rely on heuristics or learned generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning within a physics-enhanced Nocturne simulator to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through the Nocturne simulator to generate a diverse offline reinforcement learning dataset, annotated with various reward terms. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including those representing adversarial behaviours. We demonstrate that CtRL-Sim can efficiently generate diverse and realistic safety-critical scenarios while providing fine-grained control over agent behaviours. Further, we show that fine-tuning our model on simulated safety-critical scenarios generated by our model enhances this controllability.
Redesigning Information Markets in the Era of Language Models
Nasim Rahaman
Manuel Wüthrich
Li Erran Li
Bernhard Schölkopf