Portrait de Liam Paull

Liam Paull

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond
Vision par ordinateur

Biographie

Liam Paull est professeur adjoint à l'Université de Montréal et codirige le Laboratoire de robotique et d’IA intégrative de Montréal (REAL). Son laboratoire se concentre sur les problèmes de robotique, y compris la construction de représentations du monde (pour la localisation et la cartographie simultanées, par exemple), la modélisation de l'incertitude et la construction de meilleurs flux de travail pour enseigner de nouvelles tâches aux agents robotiques (notamment par la simulation ou la démonstration). Auparavant, Liam Paull a été chercheur au Computer Science and Artificial Intelligence Laboratory (CSAIL) du Massachusetts Institute of Technology (MIT), où il a dirigé le projet de voiture autonome financé par le Toyota Research Institute (TRI). Il a également été chercheur postdoctoral au laboratoire de robotique marine du MIT, où il a travaillé sur la technique SLAM (Simultaneous Localization and Mapping) pour les robots sous-marins. Il a obtenu son doctorat en 2013 à l'Université du Nouveau-Brunswick : il s’y est intéressé à la planification robuste et adaptative pour les véhicules sous-marins. Il est cofondateur et directeur de la Fondation Duckietown, dont l'objectif est de rendre accessibles à tous·tes les expériences d'apprentissage de la robotique.

Étudiants actuels

Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Collaborateur·rice de recherche - Université Laval
Doctorat - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant - UdeM
Maîtrise recherche - UdeM

Publications

ConceptFusion: Open-set Multimodal 3D Mapping
Krishna Murthy
Alihusein Kuwajerwala
Qiao Gu
Mohd Omama
Tao Chen
Shuang Li
Alaa Maalouf
Ganesh Subramanian Iyer
Soroush Saryazdi
Nikhil Varma Keetha
Ayush Tewari
Joshua B. Tenenbaum
Celso M de Melo
Madhava Krishna
Florian Shkurti
Antonio Torralba
Building 3D maps of the environment is central to robot navigation, planning, and interaction with objects in a scene. Most existing approac… (voir plus)hes that integrate semantic concepts with 3D maps largely remain confined to the closed-set setting: they can only reason about a finite set of concepts, pre-defined at training time. Further, these maps can only be queried using class labels, or in recent work, using text prompts. We address both these issues with ConceptFusion, a scene representation that is: (i) fundamentally open-set, enabling reasoning beyond a closed set of concepts (ii) inherently multi-modal, enabling a diverse range of possible queries to the 3D map, from language, to images, to audio, to 3D geometry, all working in concert. ConceptFusion leverages the open-set capabilities of today’s foundation models pre-trained on internet-scale data to reason about concepts across modalities such as natural language, images, and audio. We demonstrate that pixel-aligned open-set features can be fused into 3D maps via traditional SLAM and multi-view fusion approaches. This enables effective zero-shot spatial reasoning, not needing any additional training or finetuning, and retains long-tailed concepts better than supervised approaches, outperforming them by more than 40% margin on 3D IoU. We extensively evaluate ConceptFusion on a number of real-world datasets, simulated home environments, a real-world tabletop manipulation task, and an autonomous driving platform. We showcase new avenues for blending foundation models with 3D open-set multimodal mapping.
MeshDiffusion: Score-based Generative 3D Mesh Modeling
Zhen Liu
Yao Feng
Michael J. Black
Weiyang Liu
We consider the task of generating realistic 3D shapes, which is useful for a variety of applications such as automatic scene generation and… (voir plus) physical simulation. Compared to other 3D representations like voxels and point clouds, meshes are more desirable in practice, because (1) they enable easy and arbitrary manipulation of shapes for relighting and simulation, and (2) they can fully leverage the power of modern graphics pipelines which are mostly optimized for meshes. Previous scalable methods for generating meshes typically rely on sub-optimal post-processing, and they tend to produce overly-smooth or noisy surfaces without fine-grained geometric details. To overcome these shortcomings, we take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes. Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parameterization. We demonstrate the effectiveness of our model on multiple generative tasks.
Robust and Controllable Object-Centric Learning through Energy-based Models
Ruixiang ZHANG
Tong Che
Boris Ivanovic
Renhao Wang
Marco Pavone
Humans are remarkably good at understanding and reasoning about complex visual scenes. The capability of decomposing low-level observations … (voir plus)into discrete objects allows us to build a grounded abstract representation and identify the compositional structure of the world. Thus it is a crucial step for machine learning models to be capable of inferring objects and their properties from visual scene without explicit supervision. However, existing works on object-centric representation learning are either relying on tailor-made neural network modules or assuming sophisticated models of underlying generative and inference processes. In this work, we present EGO, a conceptually simple and general approach to learning object-centric representation through energy-based model. By forming a permutation-invariant energy function using vanilla attention blocks that are readily available in Transformers, we can infer object-centric latent variables via gradient-based MCMC methods where permutation equivariance is automatically guaranteed. We show that EGO can be easily integrated into existing architectures, and can effectively extract high-quality object-centric representations, leading to better segmentation accuracy and competitive downstream task performance. We empirically evaluate the robustness of the learned representation from EGO against distribution shift. Finally, we demonstrate the effectiveness of EGO in systematic compositional generalization, by recomposing learned energy functions for novel scene generation and manipulation.
Multi-Agent Reinforcement Learning for Fast-Timescale Demand Response of Residential Loads
Vincent Mai
Philippe Maisonneuve
Tianyu Zhang
Hadi Nekoei
To integrate high amounts of renewable energy resources, electrical power grids must be able to cope with high amplitude, fast timescale var… (voir plus)iations in power generation. Frequency regulation through demand response has the potential to coordinate temporally flexible loads, such as air conditioners, to counteract these variations. Existing approaches for discrete control with dynamic constraints struggle to provide satisfactory performance for fast timescale action selection with hundreds of agents. We propose a decentralized agent trained with multi-agent proximal policy optimization with localized communication. We explore two communication frameworks: hand-engineered, or learned through targeted multi-agent communication. The resulting policies perform well and robustly for frequency regulation, and scale seamlessly to arbitrary numbers of houses for constant processing times.
Lifelong Topological Visual Navigation
Rey Reza Wiyatno
Anqi Xu
Commonly, learning-based topological navigation approaches produce a local policy while preserving some loose connectivity of the space thro… (voir plus)ugh a topological map. Nevertheless, spurious or missing edges in the topological graph often lead to navigation failure. In this work, we propose a sampling-based graph building method, which results in sparser graphs yet with higher navigation performance compared to baseline methods. We also propose graph maintenance strategies that eliminate spurious edges and expand the graph as needed, which improves lifelong navigation performance. Unlike controllers that learn from fixed training environments, we show that our model can be fine-tuned using only a small number of collected trajectory images from a real-world environment where the agent is deployed. We demonstrate successful navigation after fine-tuning on real-world environments, and notably show significant navigation improvements over time by applying our lifelong graph maintenance strategies.
Monocular Robot Navigation with Self-Supervised Pretrained Vision Transformers
Miguel Saavedra-Ruiz
Sacha Morin
In this work, we consider the problem of learning a perception model for monocular robot navigation using few annotated images. Using a Visi… (voir plus)on Transformer (ViT) pretrained with a label-free self-supervised method, we successfully train a coarse image segmentation model for the Duckietown environment using 70 training images. Our model performs coarse image segmentation at the
Monocular Robot Navigation with Self-Supervised Pretrained Vision Transformers
Miguel Saavedra-Ruiz
Sacha Morin
In this work, we consider the problem of learning a perception model for monocular robot navigation using few annotated images. Using a Visi… (voir plus)on Transformer (ViT) pretrained with a label-free self-supervised method, we successfully train a coarse image segmentation model for the Duckietown environment using 70 training images. Our model performs coarse image segmentation at the
Lifelong Topological Visual Navigation
Rey Reza Wiyatno
Anqi Xu
Commonly, learning-based topological navigation approaches produce a local policy while preserving some loose connectivity of the space thro… (voir plus)ugh a topological map. Nevertheless, spurious or missing edges in the topological graph often lead to navigation failure. In this work, we propose a sampling-based graph building method, which results in sparser graphs yet with higher navigation performance compared to baseline methods. We also propose graph maintenance strategies that eliminate spurious edges and expand the graph as needed, which improves lifelong navigation performance. Unlike controllers that learn from fixed training environments, we show that our model can be fine-tuned using only a small number of collected trajectory images from a real-world environment where the agent is deployed. We demonstrate successful navigation after fine-tuning on real-world environments, and notably show significant navigation improvements over time by applying our lifelong graph maintenance strategies.