Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université du Québec à Rimouski
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - UQAR
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :

Publications

Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (see more)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (see 4 more)
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (see more)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Trevor Darrell
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (see 4 more)
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (see more)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (see 4 more)
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (see more)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.