Join us on November 19 for the third edition of Mila’s science popularization contest, where students will present their complex research in just three minutes before a jury.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Simulation-free training frameworks have been at the forefront of the generative modelling revolution in continuous spaces, leading to neura… (see more)l dynamical systems that encompass modern large-scale diffusion and flow matching models. Despite the scalability of training, the generation of high-quality samples and their corresponding likelihood under the model requires expensive numerical simulation -- inhibiting adoption in numerous scientific applications such as equilibrium sampling of molecular systems. In this paper, we revisit classical normalizing flows as one-step generative models with exact likelihoods and propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training. We propose Forward-Only Regression Training (FORT), a simple