Portrait de Sarath Chandar Anbil Parthipan

Sarath Chandar Anbil Parthipan

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Polytechnique Montréal, Département d'informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Indian Institute of Technology Madras

Biographie

Sarath Chandar est professeur adjoint à Polytechnique Montréal, où il dirige le laboratoire de recherche Chandar. Il est également membre du corps professoral de Mila – Institut québécois d’intelligence artificielle, et titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada en apprentissage machine permanent. Ses recherches portent sur l'apprentissage tout au long de la vie, l'apprentissage profond, l'optimisation, l'apprentissage par renforcement et le traitement du langage naturel. Pour promouvoir la recherche sur l'apprentissage tout au long de la vie, Sarath Chandar a créé la Conférence sur les agents d'apprentissage tout au long de la vie (CoLLAs) en 2022 et a présidé le programme en 2022 et en 2023. Il est titulaire d'un doctorat de l'Université de Montréal et d'une maîtrise en recherche de l'Indian Institute of Technology Madras.

Étudiants actuels

Doctorat - Polytechnique Montréal
Maîtrise recherche - Université de Montréal
Doctorat - Polytechnique Montréal
Co-superviseur⋅e :
Maîtrise recherche - Polytechnique Montréal
Doctorat - Université de Montréal
Visiteur de recherche indépendant
Doctorat - Université de Montréal
Postdoctorat - Polytechnique Montréal
Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Collaborateur·rice alumni - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Polytechnique Montréal
Doctorat - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Doctorat - Polytechnique Montréal
Co-superviseur⋅e :
Maîtrise recherche - Université de Montréal
Doctorat - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique Montréal

Publications

Promoting Exploration in Memory-Augmented Adam using Critical Momenta
Pranshu Malviya
Goncalo Mordido
Aristide Baratin
Reza Babanezhad Harikandeh
Jerry Huang
Razvan Pascanu
Adaptive gradient-based optimizers, particularly Adam, have left their mark in training large-scale deep learning models. The strength of su… (voir plus)ch optimizers is that they exhibit fast convergence while being more robust to hyperparameter choice. However, they often generalize worse than non-adaptive methods. Recent studies have tied this performance gap to flat minima selection: adaptive methods tend to find solutions in sharper basins of the loss landscape, which in turn hurts generalization. To overcome this issue, we propose a new memory-augmented version of Adam that promotes exploration towards flatter minima by using a buffer of critical momentum terms during training. Intuitively, the use of the buffer makes the optimizer overshoot outside the basin of attraction if it is not wide enough. We empirically show that our method improves the performance of several variants of Adam on standard supervised language modelling and image classification tasks.
On the Costs and Benefits of Adopting Lifelong Learning for Software Analytics -- Empirical Study on Brown Build and Risk Prediction
Doriane Olewicki
Sarra Habchi
Mathieu Nayrolles
Mojtaba Faramarzi
Bram Adams
Nowadays, software analytics tools using machine learning (ML) models to, for example, predict the risk of a code change are well establishe… (voir plus)d. However, as the goals of a project shift over time, and developers and their habits change, the performance of said models tends to degrade (drift) over time. Current retraining practices typically require retraining a new model from scratch on a large updated dataset when performance decay is observed, thus incurring a computational cost; also there is no continuity between the models as the past model is discarded and ignored during the new model training. Even though the literature has taken interest in online learning approaches, those have rarely been integrated and evaluated in industrial environments. This paper evaluates the use of lifelong learning (LL) for industrial use cases at Ubisoft, evaluating both the performance and the required computational effort in comparison to the retraining-from-scratch approaches commonly used by the industry. LL is used to continuously build and maintain ML-based software analytics tools using an incremental learner that progressively updates the old model using new data. To avoid so-called"catastrophic forgetting"of important older data points, we adopt a replay buffer of older data, which still allows us to drastically reduce the size of the overall training dataset, and hence model training time.
Faithfulness Measurable Masked Language Models
Lookbehind-SAM: k steps back, 1 step forward
Goncalo Mordido
Pranshu Malviya
Aristide Baratin
Towards Practical Tool Usage for Continually Learning LLMs
Jerry Huang
Prasanna Parthasarathi
Mehdi Rezagholizadeh
Large language models (LLMs) show an innate skill for solving language based tasks. But insights have suggested an inability to adjust for i… (voir plus)nformation or task-solving skills becoming outdated, as their knowledge, stored directly within their parameters, remains static in time. Tool use helps by offloading work to systems that the LLM can access through an interface, but LLMs that use them still must adapt to nonstationary environments for prolonged use, as new tools can emerge and existing tools can change. Nevertheless, tools require less specialized knowledge, therefore we hypothesize they are better suited for continual learning (CL) as they rely less on parametric memory for solving tasks and instead focus on learning when to apply pre-defined tools. To verify this, we develop a synthetic benchmark and follow this by aggregating existing NLP tasks to form a more realistic testing scenario. While we demonstrate scaling model size is not a solution, regardless of tool usage, continual learning techniques can enable tool LLMs to both adapt faster while forgetting less, highlighting their potential as continual learners.
Intelligent Switching for Reset-Free RL
Darshan Patil
Janarthanan Rajendran
In the real world, the strong episode resetting mechanisms that are needed to train agents in simulation are unavailable. The \textit{resett… (voir plus)ing} assumption limits the potential of reinforcement learning in the real world, as providing resets to an agent usually requires the creation of additional handcrafted mechanisms or human interventions. Recent work aims to train agents (\textit{forward}) with learned resets by constructing a second (\textit{backward}) agent that returns the forward agent to the initial state. We find that the termination and timing of the transitions between these two agents are crucial for algorithm success. With this in mind, we create a new algorithm, Reset Free RL with Intelligently Switching Controller (RISC) which intelligently switches between the two agents based on the agent's confidence in achieving its current goal. Our new method achieves state-of-the-art performance on several challenging environments for reset-free RL.
Intelligent Switching for Reset-Free RL
Darshan Patil
Janarthanan Rajendran
Mastering Memory Tasks with World Models
Mohammad Reza Samsami
Artem Zholus
Janarthanan Rajendran
Current model-based reinforcement learning (MBRL) agents struggle with long-term dependencies. This limits their ability to effectively solv… (voir plus)e tasks involving extended time gaps between actions and outcomes, or tasks demanding the recalling of distant observations to inform current actions. To improve temporal coherence, we integrate a new family of state space models (SSMs) in world models of MBRL agents to present a new method, Recall to Imagine (R2I). This integration aims to enhance both long-term memory and long-horizon credit assignment. Through a diverse set of illustrative tasks, we systematically demonstrate that R2I not only establishes a new state-of-the-art for challenging memory and credit assignment RL tasks, such as BSuite and POPGym, but also showcases superhuman performance in the complex memory domain of Memory Maze. At the same time, it upholds comparable performance in classic RL tasks, such as Atari and DMC, suggesting the generality of our method. We also show that R2I is faster than the state-of-the-art MBRL method, DreamerV3, resulting in faster wall-time convergence.
Are self-explanations from Large Language Models faithful?
Learning Conditional Policies for Crystal Design Using Offline Reinforcement Learning
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (voir plus)covery. Recent developments in generative and geometric deep learning have shown...
Fairness-Aware Structured Pruning in Transformers
A. Zayed
Goncalo Mordido
Samira Shabanian
Ioana Baldini
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
Amirhossein Kazemnejad
Mehdi Rezagholizadeh
Prasanna Parthasarathi