Publications

IntentGPT: Few-shot Intent Discovery with Large Language Models
Juan A. Rodriguez
Nicholas Botzer
David Vazquez
Marco Pedersoli
Issam Hadj Laradji
Investigating Robot Influence on Human Behaviour By Leveraging Entrainment Effects
Lixiao Zhu
Language-guided Skill Learning with Temporal Variational Inference
Haotian Fu
Pratyusha Sharma
Elias Stengel-Eskin
George Konidaris
Marc-Alexandre Côté
Xingdi Yuan
We present an algorithm for skill discovery from expert demonstrations. The algorithm first utilizes Large Language Models (LLMs) to propose… (voir plus) an initial segmentation of the trajectories. Following that, a hierarchical variational inference framework incorporates the LLM-generated segmentation information to discover reusable skills by merging trajectory segments. To further control the trade-off between compression and reusability, we introduce a novel auxiliary objective based on the Minimum Description Length principle that helps guide this skill discovery process. We test our system on BabyAI, a grid world navigation environment, as well as ALFRED, a household simulation environment.Our results demonstrate that agents equipped with our method can discover skills that help accelerate learning and outperform baseline skill learning approaches on new long-horizon tasks.
Perspectives on Robotic Systems for the Visually Impaired
Christopher Yee Wong
Rahatul Amin Ananto
Tanaka Akiyama
Joseph Paul Nemargut
Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science
Xiangru Tang
Qiao Jin
Kunlun Zhu
Tongxin Yuan
Yichi Zhang
Wangchunshu Zhou
Meng Qu
Yilun Zhao
Zhuosheng Zhang
Arman Cohan
Zhiyong Lu
Mark Gerstein
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dj Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like Op… (voir plus)enAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dj Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like Op… (voir plus)enAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \
Stochastic gradient descent-based inference for dynamic network models with attractors
Hancong Pan
Xiaojing Zhu
Cantay Caliskan
Dino P. Christenson
Konstantinos Spiliopoulos
Dylan Walker
Stochastic gradient descent-based inference for dynamic network models with attractors
Hancong Pan
Xiaojing Zhu
Cantay Caliskan
Dino P. Christenson
Konstantinos Spiliopoulos
Dylan Walker
In Coevolving Latent Space Networks with Attractors (CLSNA) models, nodes in a latent space represent social actors, and edges indicate thei… (voir plus)r dynamic interactions. Attractors are added at the latent level to capture the notion of attractive and repulsive forces between nodes, borrowing from dynamical systems theory. However, CLSNA reliance on MCMC estimation makes scaling difficult, and the requirement for nodes to be present throughout the study period limit practical applications. We address these issues by (i) introducing a Stochastic gradient descent (SGD) parameter estimation method, (ii) developing a novel approach for uncertainty quantification using SGD, and (iii) extending the model to allow nodes to join and leave over time. Simulation results show that our extensions result in little loss of accuracy compared to MCMC, but can scale to much larger networks. We apply our approach to the longitudinal social networks of members of US Congress on the social media platform X. Accounting for node dynamics overcomes selection bias in the network and uncovers uniquely and increasingly repulsive forces within the Republican Party.
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (voir plus) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WebLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx.