Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availabili… (voir plus)ty of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces purely from … (voir plus)scalar reward signals.
A crucial challenge for current deep RL algorithms is that they require a tremendous amount of environment interactions for learning.
This can be infeasible in situations where such interactions are expensive, such as in robotics.
Offline RL algorithms try to address this issue by bootstrapping the learning process from existing logged data without needing to interact with the environment from the very beginning.
While online RL algorithms are typically evaluated as a function of the number of environment interactions, there isn't a single established protocol for evaluating offline RL methods.
In this paper, we propose a sequential approach to evaluate offline RL algorithms as a function of the training set size and thus by their data efficiency.
Sequential evaluation provides valuable insights into the data efficiency of the learning process and the robustness of algorithms to distribution changes in the dataset while also harmonizing the visualization of the offline and online learning phases.
Our approach is generally applicable and easy to implement.
We compare several existing offline RL algorithms using this approach and present insights from a variety of tasks and offline datasets.
We investigate the convergence of stochastic mirror descent (SMD) under interpolation in relatively smooth and smooth convex optimization. I… (voir plus)n relatively smooth convex optimization we provide new convergence guarantees for SMD with a constant stepsize. For smooth convex optimization we propose a new adaptive stepsize scheme --- the mirror stochastic Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make bounded gradient assumptions or bounded variance assumptions, and we show convergence to a neighborhood that vanishes under interpolation. Consequently, these results correspond to the first convergence guarantees under interpolation for the exponentiated gradient algorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic Polyak stepsize (SPS) (Loizou et al. 2021) to mirror descent and remains both practical and efficient for modern machine learning applications while inheriting the benefits of mirror descent. We complement our results with experiments across various supervised learning tasks and different instances of SMD, demonstrating the effectiveness of mSPS.
Understanding computations in the visual system requires a characterization of the distinct feature preferences of neurons in different visu… (voir plus)al cortical areas. However, we know little about how feature preferences of neurons within a given area relate to that area’s role within the global organization of visual cortex. To address this, we recorded from thousands of neurons across six visual cortical areas in mouse and leveraged generative AI methods combined with closed-loop neuronal recordings to identify each neuron’s visual feature preference. First, we discovered that the mouse’s visual system is globally organized to encode features in a manner invariant to the types of image transformations induced by self-motion. Second, we found differences in the visual feature preferences of each area and that these differences generalized across animals. Finally, we observed that a given area’s collection of preferred stimuli (‘own-stimuli’) drive neurons from the same area more effectively through their dynamic range compared to preferred stimuli from other areas (‘other-stimuli’). As a result, feature preferences of neurons within an area are organized to maximally encode differences among own-stimuli while remaining insensitive to differences among other-stimuli. These results reveal how visual areas work together to efficiently encode information about the external world.