Publications

Doctoral Symposium Committee
Anthony Cleve
Christian Lange
Silvia Breu
Manar H. Alalfi
Mario Luca Bernardi
Cornelia Boldyreff
Marco D'Ambros
Simon Denier
Natalia Dragan
Ekwa Duala-Ekoko
Fausto Fasano
Adnane Ghannem
Carmine Gravino
Maen Hammad
Imed Hammouda
Salima Hassaine
Yue Jia
Zhen Ming (Jack) Jiang
Adam Kiezun … (voir 11 de plus)
Jay Kothari
Jonathan Memaitre
Naouel Moha
Rocco Oliveto
Denys Poshyvanyk
Michele Risi
Giuseppe Scanniello
Bonita Sharif
Andrew Sutton
Anis Yousefi
Eugenio Zimeo
Manar H. Alalfi Mario Luca Bernardi Cornelia Boldyreff Anthony Cleve Marco D'Ambros Simon Denier Natalia Dragan Ekwa Duala-Ekoko Fausto Fasa… (voir plus)no Adnane Ghannem Carmine Gravino Maen Hammad Imed Hammouda Salima Hassaine Yue Jia Zhen Ming Jiang Foutse Khomh Adam Kiezun Jay Kothari Jonathan Memaitre Naouel Moha Rocco Oliveto Denys Poshyvanyk Michele Risi Giuseppe Scanniello Bonita Sharif Andrew Sutton Anis Yousefi Eugenio Zimeo
Doctoral Symposium Committee
Anthony Cleve
Christian Lange
Silvia Breu
Manar H. Alalfi
Mario Luca Bernardi
Cornelia Boldyreff
Marco D'Ambros
Simon Denier
Natalia Dragan
Ekwa Duala-Ekoko
Fausto Fasano
Adnane Ghannem
Carmine Gravino
Maen Hammad
Imed Hammouda
Salima Hassaine
Yue Jia
Zhen Ming Jiang
Adam Kiezun … (voir 11 de plus)
Jay Kothari
Jonathan Memaitre
Naouel Moha
Rocco Oliveto
Denys Poshyvanyk
Michele Risi
Giuseppe Scanniello
Bonita Sharif
Andrew Sutton
Anis Yousefi
Eugenio Zimeo
Manar H. Alalfi Mario Luca Bernardi Cornelia Boldyreff Anthony Cleve Marco D'Ambros Simon Denier Natalia Dragan Ekwa Duala-Ekoko Fausto Fasa… (voir plus)no Adnane Ghannem Carmine Gravino Maen Hammad Imed Hammouda Salima Hassaine Yue Jia Zhen Ming Jiang Foutse Khomh Adam Kiezun Jay Kothari Jonathan Memaitre Naouel Moha Rocco Oliveto Denys Poshyvanyk Michele Risi Giuseppe Scanniello Bonita Sharif Andrew Sutton Anis Yousefi Eugenio Zimeo
ProtSCAPE: Mapping the landscape of protein conformations in molecular dynamics
Siddharth Viswanath
Dhananjay Bhaskar
David R. Johnson
João F. Rocha
Egbert Castro
Jackson Grady
Alex T. Grigas
Michael Perlmutter
Corey S. O'Hern
Understanding the dynamic nature of protein structures is essential for comprehending their biological functions. While significant progress… (voir plus) has been made in predicting static folded structures, modeling protein motions on microsecond to millisecond scales remains challenging. To address these challenges, we introduce a novel deep learning architecture, Protein Transformer with Scattering, Attention, and Positional Embedding (ProtSCAPE), which leverages the geometric scattering transform alongside transformer-based attention mechanisms to capture protein dynamics from molecular dynamics (MD) simulations. ProtSCAPE utilizes the multi-scale nature of the geometric scattering transform to extract features from protein structures conceptualized as graphs and integrates these features with dual attention structures that focus on residues and amino acid signals, generating latent representations of protein trajectories. Furthermore, ProtSCAPE incorporates a regression head to enforce temporally coherent latent representations.
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (voir plus). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (voir plus). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
scMoE: single-cell mixture of experts for learning hierarchical, cell-type-specific, and interpretable representations from heterogeneous scRNA-seq data
Michael Huang
Advancements in single-cell transcriptomics methods have resulted in a wealth of single-cell RNA sequencing (scRNA-seq) data. Methods to lea… (voir plus)rn cell representation from atlas-level scRNA-seq data across diverse tissues can shed light into cell functions implicated in diseases such as cancer. However, integrating large-scale and heterogeneous scRNA-seq data is challenging due to the disparity of cell-types and batch effects. We present single-cell Mixture of Expert (scMoE), a hierarchical mixture of experts single-cell topic model. Our key contributions are the cell-type specific experts, which explicitly aligns topics with cell-types, and the integration of hierarchical cell-type lineages and domain knowledge. scMoE is both transferable and highly interpretable. We benchmarked our scMoE’s performance on 9 single-cell RNA-seq datasets for clustering and 3 simulated spatial datasets for spatial deconvolution. We additionally show that our model, using single-cell references, yields meaningful biological results by deconvolving 3 cancer bulk RNA-seq datasets and 2 spatial transcriptomics datasets. scMoE is able to identify cell-types of survival importance, find cancer subtype specific deconvolutional patterns, and capture meaningful spatially distinct cell-type distributions.
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (voir plus)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (voir plus)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
The Roles of Neural Networks in Language Acquisition
Masoud Jasbi
How can modern neural networks like language models be useful to the field of language acquisition, and more broadly cognitive science, if t… (voir plus)hey are not a priori designed to be cognitive models? As developments towards natural language understanding and generation have improved leaps and bounds, with models like GPT‐4, the question of how they can inform our understanding of human language acquisition has re‐emerged. As such, it is critical to examine how in practice linking hypotheses between models and human learners can be safely established. To address these questions, we propose a model taxonomy, including four modelling approaches, each having differing goals, from exploratory hypothesis generation to hypothesis differentiation and testing. We show how the goals of these approaches align with the overarching goals of science and linguistics by connecting our taxonomy to the realist versus instrumentalist approaches in philosophy of science. We survey recent work having adopted each of our modelling approaches and address the importance of computational modelling in language acquisition studies.
The Roles of Neural Networks in Language Acquisition
Masoud Jasbi
How can modern neural networks like language models be useful to the field of language acquisition, and more broadly cognitive science, if t… (voir plus)hey are not a priori designed to be cognitive models? As developments towards natural language understanding and generation have improved leaps and bounds, with models like GPT‐4, the question of how they can inform our understanding of human language acquisition has re‐emerged. As such, it is critical to examine how in practice linking hypotheses between models and human learners can be safely established. To address these questions, we propose a model taxonomy, including four modelling approaches, each having differing goals, from exploratory hypothesis generation to hypothesis differentiation and testing. We show how the goals of these approaches align with the overarching goals of science and linguistics by connecting our taxonomy to the realist versus instrumentalist approaches in philosophy of science. We survey recent work having adopted each of our modelling approaches and address the importance of computational modelling in language acquisition studies.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling wi… (voir plus)th a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
Modulation of leg trajectory by transcranial magnetic stimulation during walking
H. Bourgeois
Rose Guay-Hottin
E.-M. Meftah
M. Martinez
D. Barthélemy
The primary motor cortex is involved in initiation and adaptive control of locomotion. However, the role of the motor cortex in controlling … (voir plus)gait trajectories remains unclear. In animals, cortical neuromodulation allows for precise control of step height. We hypothesized that a similar control framework applies to humans, whereby cortical stimulation would primarily increase foot elevation. Transcranial magnetic stimulation (TMS) was applied over the motor cortex to assess the involvement of the corticospinal tract over the limb trajectory during human walking. Eight healthy adults (aged 20-32 years) participated in treadmill walking at 1.5 km/h. TMS was applied over the left motor cortex at an intensity of 120% of the threshold to elicit a dorsiflexion of the right ankle during the swing phase of gait. Electromyographic (EMG) measurements and three-dimensional (3D) lower limb kinematics were collected. When delivered during the early swing phase, TMS led to a significant increase in the maximum height of the right toe by a mean of 40.7% ± 14.9% (25.6mm ± 9.4 mm, p = 0.0352) and knee height by 57.8%± 16.8%; (32mm ± 9.3 mm; p = 0.008) across participants. These findings indicate that TMS can influence limb trajectory during walking, highlighting its potential as a tool for studying cortical control of locomotion.