Publications

Challenging Common Assumptions about Catastrophic Forgetting and Knowledge Accumulation
Timothee LESORT
Oleksiy Ostapenko
Pau Rodriguez
Diganta Misra
Md Rifat Arefin
Dealing With Non-stationarity in Decentralized Cooperative Multi-Agent Deep Reinforcement Learning via Multi-Timescale Learning
Hadi Nekoei
Akilesh Badrinaaraayanan
Amit Sinha
Mohammad Amin Amini
Janarthanan Rajendran
An Empirical Study of Self-Admitted Technical Debt in Machine Learning Software
Aaditya Bhatia
Bram Adams
Ahmed E. Hassan
The emergence of open-source ML libraries such as TensorFlow and Google Auto ML has enabled developers to harness state-of-the-art ML algori… (voir plus)thms with minimal overhead. However, during this accelerated ML development process, said developers may often make sub-optimal design and implementation decisions, leading to the introduction of technical debt that, if not addressed promptly, can have a significant impact on the quality of the ML-based software. Developers frequently acknowledge these sub-optimal design and development choices through code comments during software development. These comments, which often highlight areas requiring additional work or refinement in the future, are known as self-admitted technical debt (SATD). This paper aims to investigate SATD in ML code by analyzing 318 open-source ML projects across five domains, along with 318 non-ML projects. We detected SATD in source code comments throughout the different project snapshots, conducted a manual analysis of the identified SATD sample to comprehend the nature of technical debt in the ML code, and performed a survival analysis of the SATD to understand the evolution of such debts. We observed: i) Machine learning projects have a median percentage of SATD that is twice the median percentage of SATD in non-machine learning projects. ii) ML pipeline components for data preprocessing and model generation logic are more susceptible to debt than model validation and deployment components. iii) SATDs appear in ML projects earlier in the development process compared to non-ML projects. iv) Long-lasting SATDs are typically introduced during extensive code changes that span multiple files exhibiting low complexity.
Responsible AI Research Needs Impact Statements Too
Michael Ekstrand
Carlos Castillo
Jina Suh
All types of research, development, and policy work can have unintended, adverse consequences - work in responsible artificial intelligence … (voir plus)(RAI), ethical AI, or ethics in AI is no exception.
Task-Agnostic Continual Reinforcement Learning: Gaining Insights and Overcoming Challenges
Massimo Caccia
Jonas Mueller
Taesup Kim
Rasool Fakoor
Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi
Hadi Nekoei
Xutong Zhao
Janarthanan Rajendran
Miao Liu
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Smita Krishnaswamy
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Zhitao Ying
Rex Ying
Jie Fu
Stefano Ermon
The evidence mismatch in pediatric surgical practice
Marina Broomfield
Zena Agabani
Elena Guadagno
Robert Baird
Differentiable visual computing for inverse problems and machine learning
Andrew Spielberg
Fangcheng Zhong
Konstantinos Rematas
Krishna Murthy
Cengiz Oztireli
Tzu-Mao Li
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (voir plus)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
Adaptive Integration of Categorical and Multi-relational Ontologies with EHR Data for Medical Concept Embedding
Chin Wang Cheong
Kejing Yin
William K. Cheung
Jonathan Poon