Trust No Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild
Niloofar Mireshghallah
Maria Antoniak
Yash More
Yejin Choi
Measuring personal disclosures made in human-chatbot interactions can provide a better understanding of users' AI literacy and facilitate pr… (voir plus)ivacy research for large language models (LLMs). We run an extensive, fine-grained analysis on the personal disclosures made by real users to commercial GPT models, investigating the leakage of personally identifiable and sensitive information. To understand the contexts in which users disclose to chatbots, we develop a taxonomy of tasks and sensitive topics, based on qualitative and quantitative analysis of naturally occurring conversations. We discuss these potential privacy harms and observe that: (1) personally identifiable information (PII) appears in unexpected contexts such as in translation or code editing (48% and 16% of the time, respectively) and (2) PII detection alone is insufficient to capture the sensitive topics that are common in human-chatbot interactions, such as detailed sexual preferences or specific drug use habits. We believe that these high disclosure rates are of significant importance for researchers and data curators, and we call for the design of appropriate nudging mechanisms to help users moderate their interactions.
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on sel… (voir plus)f-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
Web Retrieval Agents for Evidence-Based Misinformation Detection
Jacob-Junqi Tian
Hao Yu
Yury Orlovskiy
Tyler Vergho
Mauricio Rivera
Mayank Goel
Zachary Yang
Kellin Pelrine
What makes a good metric? Evaluating automatic metrics for text-to-image consistency
Candace Ross
Melissa Hall
Adina Williams
Automated River Substrate Mapping From Sonar Imagery With Machine Learning
C. S. Bodine
D. Buscombe
Canada's approach to SARS-CoV-2 sero-surveillance: Lessons learned for routine surveillance and future pandemics.
Sheila F. O’Brien
Michael Asamoah-Boaheng
Brian Grunau
Mel Krajden
David M. Goldfarb
Maureen Anderson
Marc Germain
Patrick Brown
Derek R. Stein
Kami Kandola
Graham Tipples
Philip Awadalla
Amanda Lang
Lesley Behl
Tiffany Fitzpatrick
Steven J. Drews
SETTING In Canada's federated healthcare system, 13 provincial and territorial jurisdictions have independent responsibility to collect data… (voir plus) to inform health policies. During the COVID-19 pandemic (2020-2023), national and regional sero-surveys mostly drew upon existing infrastructure to quickly test specimens and collect data but required cross-jurisdiction coordination and communication. INTERVENTION There were 4 national and 7 regional general population SARS-CoV-2 sero-surveys. Survey methodologies varied by participant selection approaches, assay choices, and reporting structures. We analyzed Canadian pandemic sero-surveillance initiatives to identify key learnings to inform future pandemic planning. OUTCOMES Over a million samples were tested for SARS-CoV-2 antibodies from 2020 to 2023 but siloed in 11 distinct datasets. Most national sero-surveys had insufficient sample size to estimate regional prevalence; differences in methodology hampered cross-regional comparisons of regional sero-surveys. Only four sero-surveys included questionnaires. Sero-surveys were not directly comparable due to different assays, sampling methodologies, and time-frames. Linkage to health records occurred in three provinces only. Dried blood spots permitted sample collection in remote populations and during stay-at-home orders. IMPLICATIONS To provide timely, high-quality information for public health decision-making, routine sero-surveillance systems must be adaptable, flexible, and scalable. National capability planning should include consortiums for assay design and validation, defined mechanisms to improve test capacity, base documents for data linkage and material transfer across jurisdictions, and mechanisms for real-time communication of data. Lessons learned will inform incorporation of a robust sero-survey program into routine surveillance with strategic sampling and capacity to adapt and scale rapidly as a part of a comprehensive national pandemic response plan.
Canada’s approach to SARS-CoV-2 sero-surveillance: Lessons learned for routine surveillance and future pandemics
Sheila F. O’Brien
Michael Asamoah-Boaheng
Brian Grunau
Mel Krajden
David M. Goldfarb
Maureen Anderson
Marc Germain
Patrick Brown
Derek R. Stein
Kami Kandola
Graham Tipples
Philip Awadalla
Amanda Lang
Lesley Behl
Tiffany Fitzpatrick
Steven J. Drews
Adaptive Accompaniment with ReaLchords
Yusong Wu
Tim Cooijmans
Kyle Kastner
Adam Roberts
Ian Simon
Alexander Scarlatos
Chris Donahue
Cassie Tarakajian
Shayegan Omidshafiei
Natasha Jaques
Jamming requires coordination, anticipation, and collaborative creativity between musicians. Current generative models of music produce expr… (voir plus)essive output but are not able to generate in an online manner, meaning simultaneously with other musicians (human or otherwise). We propose ReaLchords, an online generative model for improvising chord accompaniment to user melody. We start with an online model pretrained by maximum likelihood, and use reinforcement learning to finetune the model for online use. The finetuning objective leverages both a novel reward model that provides feedback on both harmonic and temporal coherency between melody and chord, and a divergence term that implements a novel type of distillation from a teacher model that can see the future melody. Through quantitative experiments and listening tests, we demonstrate that the resulting model adapts well to unfamiliar input and produce fitting accompaniment. ReaLchords opens the door to live jamming, as well as simultaneous co-creation in other modalities.
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian Dietrich Weilbach
Frank Wood
Jakob H. Macke
Autoformalizing Euclidean Geometry
Logan Murphy
Kaiyu Yang
Jialiang Sun
Zhaoyu Li
Animashree Anandkumar
Autoformalization involves automatically translating informal math into formal theorems and proofs that are machine-verifiable. Euclidean ge… (voir plus)ometry provides an interesting and controllable domain for studying autoformalization. In this paper, we introduce a neuro-symbolic framework for autoformalizing Euclidean geometry, which combines domain knowledge, SMT solvers, and large language models (LLMs). One challenge in Euclidean geometry is that informal proofs rely on diagrams, leaving gaps in texts that are hard to formalize. To address this issue, we use theorem provers to fill in such diagrammatic information automatically, so that the LLM only needs to autoformalize the explicit textual steps, making it easier for the model. We also provide automatic semantic evaluation for autoformalized theorem statements. We construct LeanEuclid, an autoformalization benchmark consisting of problems from Euclid’s Elements and the UniGeo dataset formalized in the Lean proof assistant. Experiments with GPT-4 and GPT-4V show the capability and limitations of state-of-the-art LLMs on autoformalizing geometry problems. The data and code are available at https://github.com/loganrjmurphy/LeanEuclid.
CKGConv: General Graph Convolution with Continuous Kernels
Liheng Ma
Soumyasundar Pal
Yitian Zhang
Jiaming Zhou
Yingxue Zhang
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a gene… (voir plus)ral convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits a stronger expressiveness, as powerful as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets. The code and models are publicly available at https://github.com/networkslab/CKGConv.
A Computational Framework for Solving Wasserstein Lagrangian Flows
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
The dynamical formulation of the optimal transport can be extended through various choices of the underlying geometry (kinetic energy), and … (voir plus)the regularization of density paths (potential energy). These combinations yield different variational problems (Lagrangians), encompassing many variations of the optimal transport problem such as the Schr\"odinger bridge, unbalanced optimal transport, and optimal transport with physical constraints, among others. In general, the optimal density path is unknown, and solving these variational problems can be computationally challenging. We propose a novel deep learning based framework approaching all of these problems from a unified perspective. Leveraging the dual formulation of the Lagrangians, our method does not require simulating or backpropagating through the trajectories of the learned dynamics, and does not need access to optimal couplings. We showcase the versatility of the proposed framework by outperforming previous approaches for the single-cell trajectory inference, where incorporating prior knowledge into the dynamics is crucial for correct predictions.