We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Accelerating Training with Neuron Interaction and Nowcasting Networks
Neural network training can be accelerated when a learnable update rule is used in lieu of classic adaptive optimizers (e.g. Adam). However,… (see more) learnable update rules can be costly and unstable to train and use. Recently, Jang et al. (2023) proposed a simpler approach to accelerate training based on weight nowcaster networks (WNNs). In their approach, Adam is used for most of the optimization steps and periodically, only every few steps, a WNN nowcasts (predicts near future) parameters. We improve WNNs by proposing neuron interaction and nowcasting (NiNo) networks. In contrast to WNNs, NiNo leverages neuron connectivity and graph neural networks to more accurately nowcast parameters. We further show that in some networks, such as Transformers, modeling neuron connectivity accurately is challenging. We address this and other limitations, which allows NiNo to accelerate Adam training by up to 50% in vision and language tasks.
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data do not react to the actions of the AV, and their behaviour cannot be easily controlled to simulate counterfactual scenarios. Existing approaches have attempted to address these shortcomings by proposing methods that rely on heuristics or learned generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning within a physics-enhanced Nocturne simulator to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through the Nocturne simulator to generate a diverse offline reinforcement learning dataset, annotated with various reward terms. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including those representing adversarial behaviours. We demonstrate that CtRL-Sim can efficiently generate diverse and realistic safety-critical scenarios while providing fine-grained control over agent behaviours. Further, we show that fine-tuning our model on simulated safety-critical scenarios generated by our model enhances this controllability.
Saliency maps are one of the most popular tools to interpret the operation of a neural network: they compute input features deemed relevant … (see more)to the final prediction, which are often subsets of pixels that are easily understandable by a human being. However, it is known that relying solely on human assessment to judge a saliency map method can be misleading.
In this work, we propose a new neural network verification specification called saliency-robustness, which aims to use formal methods to prove a relationship between Vanilla Gradient (VG) -- a simple yet surprisingly effective saliency map method -- and the network's prediction: given a network, if an input
Stack Overflow incentive system awards users with reputation scores to ensure quality. The decentralized nature of the forum may make the in… (see more)centive system prone to manipulation. This paper offers, for the first time, a comprehensive study of the reported types of reputation manipulation scenarios that might be exercised in Stack Overflow and the prevalence of such reputation gamers by a qualitative study of 1,697 posts from meta Stack Exchange sites. We found four different types of reputation fraud scenarios, such as voting rings where communities form to upvote each other repeatedly on similar posts. We developed algorithms that enable platform managers to automatically identify these suspicious reputation gaming scenarios for review. The first algorithm identifies isolated/semi-isolated communities where probable reputation frauds may occur mostly by collaborating with each other. The second algorithm looks for sudden unusual big jumps in the reputation scores of users. We evaluated the performance of our algorithms by examining the reputation history dashboard of Stack Overflow users from the Stack Overflow website. We observed that around 60-80% of users flagged as suspicious by our algorithms experienced reductions in their reputation scores by Stack Overflow.
2024-09-04
ACM Transactions on Software Engineering and Methodology (published)
The rise in low Earth orbit (LEO) satellite Internet services has led to increasing demand, often exceeding available data rates and comprom… (see more)ising the quality of service. While deploying more satellites offers a short-term fix, designing higher-performance satellites with enhanced transmission capabilities provides a more sustainable solution. Achieving the necessary high capacity requires interconnecting multiple modem banks within a satellite payload. However, there is a notable gap in research on internal packet routing within extremely high-throughput satellites. To address this, we propose a real-time optimal flow allocation and priority queue scheduling method using online convex optimization-based model predictive control. We model the problem as a multi-commodity flow instance and employ an online interior-point method to solve the routing and scheduling optimization iteratively. This approach minimizes packet loss and supports real-time rerouting with low computational overhead. Our method is tested in simulation on a next-generation extremely high-throughput satellite model, demonstrating its effectiveness compared to a reference batch optimization and to traditional methods.
Humor is a fundamental aspect of human communication and cognition, as it plays a crucial role in social engagement. Although theories about… (see more) humor have evolved over centuries, there is still no agreement on a single, comprehensive humor theory. Likewise, computationally recognizing humor remains a significant challenge despite recent advances in large language models. Moreover, most computational approaches to detecting humor are not based on existing humor theories. This paper contributes to bridging this long-standing gap between humor theory research and computational humor detection by creating an interpretable framework for humor classification, grounded in multiple humor theories, called THInC (Theory-driven Humor Interpretation and Classification). THInC ensembles interpretable GA2M classifiers, each representing a different humor theory. We engineered a transparent flow to actively create proxy features that quantitatively reflect different aspects of theories. An implementation of this framework achieves an F1 score of 0.85. The associative interpretability of the framework enables analysis of proxy efficacy, alignment of joke features with theories, and identification of globally contributing features. This paper marks a pioneering effort in creating a humor detection framework that is informed by diverse humor theories and offers a foundation for future advancements in theory-driven humor classification. It also serves as a first step in automatically comparing humor theories in a quantitative manner.
Humor is a fundamental aspect of human communication and cognition, as it plays a crucial role in social engagement. Although theories about… (see more) humor have evolved over centuries, there is still no agreement on a single, comprehensive humor theory. Likewise, computationally recognizing humor remains a significant challenge despite recent advances in large language models. Moreover, most computational approaches to detecting humor are not based on existing humor theories. This paper contributes to bridging this long-standing gap between humor theory research and computational humor detection by creating an interpretable framework for humor classification, grounded in multiple humor theories, called THInC (Theory-driven Humor Interpretation and Classification). THInC ensembles interpretable GA2M classifiers, each representing a different humor theory. We engineered a transparent flow to actively create proxy features that quantitatively reflect different aspects of theories. An implementation of this framework achieves an F1 score of 0.85. The associative interpretability of the framework enables analysis of proxy efficacy, alignment of joke features with theories, and identification of globally contributing features. This paper marks a pioneering effort in creating a humor detection framework that is informed by diverse humor theories and offers a foundation for future advancements in theory-driven humor classification. It also serves as a first step in automatically comparing humor theories in a quantitative manner.