Portrait de Guy Wolf

Guy Wolf

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Concordia University
CHUM - Montreal University Hospital Center
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage profond
Apprentissage spectral
Apprentissage sur graphes
Exploration des données
Modélisation moléculaire
Recherche d'information
Réseaux de neurones en graphes
Systèmes dynamiques
Théorie de l'apprentissage automatique

Biographie

Guy Wolf est professeur agrégé au Département de mathématiques et de statistique de l'Université de Montréal. Ses intérêts de recherche se situent au carrefour de l'apprentissage automatique, de la science des données et des mathématiques appliquées. Il s'intéresse particulièrement aux méthodes d'exploration de données qui utilisent l'apprentissage multiple et l'apprentissage géométrique profond, ainsi qu'aux applications pour l'analyse exploratoire des données biomédicales.

Ses recherches portent sur l'analyse exploratoire des données, avec des applications en bio-informatique. Ses approches sont multidisciplinaires et combinent l'apprentissage automatique, le traitement du signal et les outils mathématiques appliqués. En particulier, ses travaux récents utilisent une combinaison de géométries de diffusion et d'apprentissage profond pour trouver des modèles émergents, des dynamiques et des structures dans les mégadonnées à grande dimension (par exemple, dans la génomique et la protéomique de la cellule unique).

Étudiants actuels

Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - Helmholtz Munich
Collaborateur·rice alumni
Stagiaire de recherche - UdeM
Collaborateur·rice de recherche - Western Washington University (faculty; assistant prof))
Co-superviseur⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Yale
Postdoctorat - UdeM
Visiteur de recherche indépendant - Helmholtz Munich / TUM
Doctorat - UdeM
Visiteur de recherche indépendant - LMU Munich & Helmholtz Munich
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Postdoctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - Yale
Stagiaire de recherche - Western Washington University
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Collaborateur·rice de recherche - McGill (assistant professor)

Publications

Non-Uniform Parameter-Wise Model Merging
Albert M. Orozco Camacho
Stefan Horoi
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (voir plus)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.
Non-Uniform Parameter-Wise Model Merging
Albert Manuel Orozco Camacho
Stefan Horoi
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (voir plus)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.
Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs
Frederik Wenkel
Semih Cantürk
Stefan Horoi
Michael Perlmutter
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (voir plus)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor W. Coley
Shuangjia Zheng
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Chenqing Hua
Yong Liu
Dinghuai Zhang
Odin Zhang
Sitao Luan
Kevin K Yang
Shuangjia Zheng
Neuro-GSTH: A Geometric Scattering and Persistent Homology Framework for Uncovering Spatiotemporal Signatures in Neural Activity
Dhananjay Bhaskar
Jessica Moore
Yanlei Zhang
Feng Gao
Bastian Rieck
Helen Pushkarskaya
Firas Khasawneh
Elizabeth Munch
Valentina Greco
Christopher Pittenger