Portrait de Lydia Mezrag n'est pas disponible

Lydia Mezrag

Doctorat - UdeM
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage profond
Réseaux de neurones en graphes

Publications

Principal Curvatures Estimation with Applications to Single Cell Data
Yanlei Zhang
Xingzhi Sun
Charles Xu
Kincaid MacDonald
Dhananjay Bhaskar
Bastian Rieck
The rapidly growing field of single-cell transcriptomic sequencing (scRNAseq) presents challenges for data analysis due to its massive datas… (voir plus)ets. A common method in manifold learning consists in hypothesizing that datasets lie on a lower dimensional manifold. This allows to study the geometry of point clouds by extracting meaningful descriptors like curvature. In this work, we will present Adaptive Local PCA (AdaL-PCA), a data-driven method for accurately estimating various notions of intrinsic curvature on data manifolds, in particular principal curvatures for surfaces. The model relies on local PCA to estimate the tangent spaces. The evaluation of AdaL-PCA on sampled surfaces shows state-of-the-art results. Combined with a PHATE embedding, the model applied to single-cell RNA sequencing data allows us to identify key variations in the cellular differentiation.
Principal Curvatures Estimation with Applications to Single Cell Data
Yanlei Zhang
Xingzhi Sun
Charles Xu
Kincaid MacDonald
Dhananjay Bhaskar
Bastian Rieck