Portrait de Guy Wolf

Guy Wolf

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département de mathématiques et statistiques
Concordia University
CHUM - Montreal University Hospital Center
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage multimodal
Apprentissage profond
Apprentissage spectral
Apprentissage sur graphes
Exploration des données
Modélisation moléculaire
Recherche d'information
Réseaux de neurones en graphes
Systèmes dynamiques
Théorie de l'apprentissage automatique

Biographie

Guy Wolf est professeur agrégé au Département de mathématiques et de statistique de l'Université de Montréal. Ses intérêts de recherche se situent au carrefour de l'apprentissage automatique, de la science des données et des mathématiques appliquées. Il s'intéresse particulièrement aux méthodes d'exploration de données qui utilisent l'apprentissage multiple et l'apprentissage géométrique profond, ainsi qu'aux applications pour l'analyse exploratoire des données biomédicales.

Ses recherches portent sur l'analyse exploratoire des données, avec des applications en bio-informatique. Ses approches sont multidisciplinaires et combinent l'apprentissage automatique, le traitement du signal et les outils mathématiques appliqués. En particulier, ses travaux récents utilisent une combinaison de géométries de diffusion et d'apprentissage profond pour trouver des modèles émergents, des dynamiques et des structures dans les mégadonnées à grande dimension (par exemple, dans la génomique et la protéomique de la cellule unique).

Étudiants actuels

Visiteur de recherche indépendant - University of Lorraine
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni
Collaborateur·rice de recherche - Western Washington University (faculty; assistant prof))
Co-superviseur⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Yale
Visiteur de recherche indépendant - Yale University
Postdoctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Postdoctorat - Concordia
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - Concordia
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Maîtrise recherche - UdeM
Collaborateur·rice de recherche - Concordia
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - Yale
Stagiaire de recherche - Western Washington University
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Collaborateur·rice de recherche - McGill (assistant professor)

Publications

Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators
Alexander Tong
Smita Krishnaswamy
Anomaly detection is of great interest in fields where abnormalities need to be identified and corrected (e.g., medicine and finance). Deep … (voir plus)learning methods for this task often rely on autoencoder reconstruction error, sometimes in conjunction with other penalties. We show that this approach exhibits intrinsic biases that lead to undesirable results. Reconstruction-based methods can sometimes show low error on simple-to-reconstruct points that are not part of the training data, for example the all black image. Instead, we introduce a new unsupervised Lipschitz anomaly discriminator (LAD) that does not suffer from these biases. Our anomaly discriminator is trained, similar to the discriminator of a GAN, to detect the difference between the training data and corruptions of the training data. We show that this procedure successfully detects unseen anomalies with guarantees on those that have a certain Wasserstein distance from the data or corrupted training set. These additions allow us to show improved performance on MNIST, CIFAR10, and health record data. Further, LAD does not require decoding back to the original data space, which makes anomaly detection possible in domains where it is difficult to define a decoder, such as in irregular graph structured data. Empirically, we show this framework leads to improved performance on image, health record, and graph data.