Portrait of Guy Wolf

Guy Wolf

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Concordia University
CHUM - Montreal University Hospital Center
Research Topics
Data Mining
Deep Learning
Dynamical Systems
Graph Neural Networks
Information Retrieval
Learning on Graphs
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Multimodal Learning
Representation Learning
Spectral Learning

Biography

Guy Wolf is an associate professor in the Department of Mathematics and Statistics at Université de Montréal.

His research interests lie at the intersection of machine learning, data science and applied mathematics. He is particularly interested in data mining methods that use manifold learning and deep geometric learning, as well as applications for the exploratory analysis of biomedical data.

Wolf’s research focuses on exploratory data analysis and its applications in bioinformatics. His approaches are multidisciplinary and bring together machine learning, signal processing and applied math tools. His recent work has used a combination of diffusion geometries and deep learning to find emergent patterns, dynamics, and structure in big high dimensional- data (e.g., in single-cell genomics and proteomics).

Current Students

Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Independent visiting researcher - Helmholtz Munich
Collaborating Alumni
Research Intern - Université de Montréal
Collaborating researcher - Western Washington University (faculty; assistant prof))
Co-supervisor :
PhD - Université de Montréal
Master's Research - McGill University
Principal supervisor :
Master's Research - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - Yale
Postdoctorate - Université de Montréal
Independent visiting researcher - Helmholtz Munich / TUM
PhD - Université de Montréal
Independent visiting researcher - LMU Munich & Helmholtz Munich
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Postdoctorate - Concordia University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Co-supervisor :
Collaborating researcher - Yale
PhD - Université de Montréal
Research Intern - Western Washington University
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - McGill University (assistant professor)

Publications

Non-Uniform Parameter-Wise Model Merging
Albert Manuel Orozco Camacho
Stefan Horoi
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (see more)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.
Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs
Frederik Wenkel
Semih Cantürk
Stefan Horoi
Michael Perlmutter
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Chenqing Hua
Jiarui Lu
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Effective Protein-Protein Interaction Exploration with PPIretrieval
Chenqing Hua
Connor W. Coley
Shuangjia Zheng
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Chenqing Hua
Yong Liu
Dinghuai Zhang
Odin Zhang
Sitao Luan
Kevin K Yang
Shuangjia Zheng
Neuro-GSTH: A Geometric Scattering and Persistent Homology Framework for Uncovering Spatiotemporal Signatures in Neural Activity
Dhananjay Bhaskar
Jessica Moore
Yanlei Zhang
Feng Gao
Bastian Rieck
Helen Pushkarskaya
Firas Khasawneh
Elizabeth Munch
Valentina Greco
Christopher Pittenger
Learning Stochastic Rainbow Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Random feature models are a popular approach for studying network learning that can capture important behaviors while remaining simpler than… (see more) traditional training. Guth et al. [2024] introduced “rainbow” networks which model the distribution of trained weights as correlated random features conditioned on previous layer activity. Sampling new weights from distributions fit to learned networks led to similar performance in entirely untrained networks, and the observed weight covariance were found to be low rank. This provided evidence that random feature models could be extended to some networks away from initialization, but White et al. [2024] failed to replicate their results in the deeper ResNet18 architecture. Here we ask whether the rainbow formulation can succeed in deeper networks by directly training a stochastic ensemble of random features, which we call stochastic rainbow networks. At every gradient descent iteration, new weights are sampled for all intermediate layers and features aligned layer-wise. We find: (1) this approach scales to deeper models, which outperform shallow networks at large widths; (2) ensembling multiple samples from the stochastic model is better than retraining the classifier head; and (3) low-rank parameterization of the learnable weight covariances can approach the accuracy of full-rank networks. This offers more evidence for rainbow and other structured random feature networks as reduced models of deep learning.