Portrait of Guy Wolf

Guy Wolf

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Concordia University
CHUM - Montreal University Hospital Center
Research Topics
Data Mining
Deep Learning
Dynamical Systems
Graph Neural Networks
Information Retrieval
Learning on Graphs
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Multimodal Learning
Representation Learning
Spectral Learning

Biography

Guy Wolf is an associate professor in the Department of Mathematics and Statistics at Université de Montréal.

His research interests lie at the intersection of machine learning, data science and applied mathematics. He is particularly interested in data mining methods that use manifold learning and deep geometric learning, as well as applications for the exploratory analysis of biomedical data.

Wolf’s research focuses on exploratory data analysis and its applications in bioinformatics. His approaches are multidisciplinary and bring together machine learning, signal processing and applied math tools. His recent work has used a combination of diffusion geometries and deep learning to find emergent patterns, dynamics, and structure in big high dimensional- data (e.g., in single-cell genomics and proteomics).

Current Students

Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - McGill University
Master's Research - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Collaborating researcher - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Collaborating researcher - McGill University (assistant professor)

Publications

Neural networks with optimized single-neuron adaptation uncover biologically plausible regularization
Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptatio… (see more)n are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single-neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single-neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single-neuron properties and argue that neural diversity and adaptation play an active regularization role, enabling neural circuits to optimally propagate information across time.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yang Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Reaction-conditioned De Novo Enzyme Design with GENzyme
Yong Liu
Odin Zhang
Rex Ying
Wengong Jin
Shuangjia Zheng
The introduction of models like RFDiffusionAA, AlphaFold3, AlphaProteo, and Chai1 has revolutionized protein structure modeling and interact… (see more)ion prediction, primarily from a binding perspective, focusing on creating ideal lock-and-key models. However, these methods can fall short for enzyme-substrate interactions, where perfect binding models are rare, and induced fit states are more common. To address this, we shift to a functional perspective for enzyme design, where the enzyme function is defined by the reaction it catalyzes. Here, we introduce \textsc{GENzyme}, a \textit{de novo} enzyme design model that takes a catalytic reaction as input and generates the catalytic pocket, full enzyme structure, and enzyme-substrate binding complex. \textsc{GENzyme} is an end-to-end, three-staged model that integrates (1) a catalytic pocket generation and sequence co-design module, (2) a pocket inpainting and enzyme inverse folding module, and (3) a binding and screening module to optimize and predict enzyme-substrate complexes. The entire design process is driven by the catalytic reaction being targeted. This reaction-first approach allows for more accurate and biologically relevant enzyme design, potentially surpassing structure-based and binding-focused models in creating enzymes capable of catalyzing specific reactions. We provide \textsc{GENzyme} code at https://github.com/WillHua127/GENzyme.
Effective Protein-Protein Interaction Exploration with PPIretrieval
Connor W. Coley
Shuangjia Zheng
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary Dynamics
Yang Liu
Odin Zhang
Kevin K Yang
Shuangjia Zheng
Neuro-GSTH: A Geometric Scattering and Persistent Homology Framework for Uncovering Spatiotemporal Signatures in Neural Activity
Dhananjay Bhaskar
Jessica Moore
Yanlei Zhang
Feng Gao
Bastian Rieck
Helen Pushkarskaya
Firas Khasawneh
Elizabeth Munch
Valentina Greco
Christopher Pittenger
Learning Stochastic Rainbow Networks
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Random feature models are a popular approach for studying network learning that can capture important behaviors while remaining simpler than… (see more) traditional training. Guth et al. [2024] introduced “rainbow” networks which model the distribution of trained weights as correlated random features conditioned on previous layer activity. Sampling new weights from distributions fit to learned networks led to similar performance in entirely untrained networks, and the observed weight covariance were found to be low rank. This provided evidence that random feature models could be extended to some networks away from initialization, but White et al. [2024] failed to replicate their results in the deeper ResNet18 architecture. Here we ask whether the rainbow formulation can succeed in deeper networks by directly training a stochastic ensemble of random features, which we call stochastic rainbow networks. At every gradient descent iteration, new weights are sampled for all intermediate layers and features aligned layer-wise. We find: (1) this approach scales to deeper models, which outperform shallow networks at large widths; (2) ensembling multiple samples from the stochastic model is better than retraining the classifier head; and (3) low-rank parameterization of the learnable weight covariances can approach the accuracy of full-rank networks. This offers more evidence for rainbow and other structured random feature networks as reduced models of deep learning.
Reactzyme: A Benchmark for Enzyme-Reaction Prediction
Bozitao Zhong
Liang Hong
Shuangjia Zheng