Portrait of Guy Wolf

Guy Wolf

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Concordia University
CHUM - Montreal University Hospital Center
Research Topics
Data Mining
Deep Learning
Dynamical Systems
Graph Neural Networks
Information Retrieval
Learning on Graphs
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Multimodal Learning
Representation Learning
Spectral Learning

Biography

Guy Wolf is an associate professor in the Department of Mathematics and Statistics at Université de Montréal.

His research interests lie at the intersection of machine learning, data science and applied mathematics. He is particularly interested in data mining methods that use manifold learning and deep geometric learning, as well as applications for the exploratory analysis of biomedical data.

Wolf’s research focuses on exploratory data analysis and its applications in bioinformatics. His approaches are multidisciplinary and bring together machine learning, signal processing and applied math tools. His recent work has used a combination of diffusion geometries and deep learning to find emergent patterns, dynamics, and structure in big high dimensional- data (e.g., in single-cell genomics and proteomics).

Current Students

Independent visiting researcher - University of Lorraine
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni
Collaborating researcher - Western Washington University (faculty; assistant prof))
Co-supervisor :
PhD - Université de Montréal
Master's Research - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - Yale
Postdoctorate - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Postdoctorate - Concordia University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Concordia University
Principal supervisor :
Independent visiting researcher
Master's Research - Université de Montréal
Collaborating researcher - Concordia University
Principal supervisor :
Collaborating researcher - Université de Montréal
Co-supervisor :
Collaborating researcher - Yale
PhD - Université de Montréal
Research Intern - Western Washington University
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - McGill University (assistant professor)

Publications

Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Frederik Wenkel
Luis Müller
Jama Hussein Mohamud
Ali Parviz
Michael Craig
Michał Koziarski
Jiarui Lu
Zhaocheng Zhu
Cristian Gabellini
Kerstin Klaser
Josef Dean
Cas Wognum … (see 15 more)
Maciej Sypetkowski
Christopher Morris
Ioannis Koutis
Prudencio Tossou
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Danqi Liao
Chen Liu
Benjamin W Christensen
Alexander Tong
Guillaume Huguet
Maximilian Nickel
Ian Adelstein
Smita Krishnaswamy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to comput… (see more)e reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet.
Enhancing Supervised Visualization through Autoencoder and Random Forest Proximities for Out-of-Sample Extension
Shuang Ni
Adrien Aumon
Kevin R. Moon
Jake S. Rhodes
The value of supervised dimensionality reduction lies in its ability to uncover meaningful connections between data features and labels. Com… (see more)mon dimensionality reduction methods embed a set of fixed, latent points, but are not capable of generalizing to an unseen test set. In this paper, we provide an out-of-sample extension method for the random forest-based supervised dimensionality reduction method, RF-PHATE, combining information learned from the random forest model with the function-learning capabilities of autoencoders. Through quantitative assessment of various autoencoder architectures, we identify that networks that reconstruct random forest proximities are more robust for the embedding extension problem. Furthermore, by leveraging proximity-based prototypes, we achieve a 40% reduction in training time without compromising extension quality. Our method does not require label information for out-of-sample points, thus serving as a semi-supervised method, and can achieve consistent quality using only 10% of the training data.
Learnable Filters for Geometric Scattering Modules
Alexander Tong
Frederik Wenkel
Dhananjay Bhaskar
Kincaid MacDonald
Jackson Grady
Michael Perlmutter
Smita Krishnaswamy
Simulation-Free Schrödinger Bridges via Score and Flow Matching
Alexander Tong
Nikolay Malkin
Kilian FATRAS
Lazar Atanackovic
Yanlei Zhang
Guillaume Huguet
We present simulation-free score and flow matching ([SF]…
Spectral Temporal Contrastive Learning
Sacha Morin
Somjit Nath
Learning useful data representations without requiring labels is a cornerstone of modern deep learning. Self-supervised learning methods, pa… (see more)rticularly contrastive learning (CL), have proven successful by leveraging data augmentations to define positive pairs. This success has prompted a number of theoretical studies to better understand CL and investigate theoretical bounds for downstream linear probing tasks. This work is concerned with the temporal contrastive learning (TCL) setting where the sequential structure of the data is used instead to define positive pairs, which is more commonly used in RL and robotics contexts. In this paper, we adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive Learning (STCL). We discuss a population loss based on a state graph derived from a time-homogeneous reversible Markov chain with uniform stationary distribution. The STCL loss enables to connect the linear probing performance to the spectral properties of the graph, and can be estimated by considering previously observed data sequences as an ensemble of MCMC chains.
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Smita Krishnaswamy
Channel Selection for Test-Time Adaptation Under Distribution Shift
Pedro Vianna
Muawiz Sajjad Chaudhary
An Tang
Guy Cloutier
Michael Eickenberg
To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust mod… (see more)els to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts.
Understanding Graph Neural Networks with Generalized Geometric Scattering Transforms
Michael Perlmutter
Alexander Tong
Feng Gao
Matthew Hirn
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks. R… (see more)ecently, several works have introduced generalizations of the scattering transform for non-Euclidean settings such as graphs. Our work builds upon these constructions by introducing windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets. We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed construction unifies and extends known theoretical results for many of the existing graph scattering architectures. In doing so, this work helps bridge the gap between geometric scattering and other graph neural networks by introducing a large family of networks with provable stability and invariance guarantees. These results lay the groundwork for future deep learning architectures for graph-structured data that have learned filters and also provably have desirable theoretical properties.
Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis.
Pedro Vianna
Sara-Ivana Calce
Pamela Boustros
Cassandra Larocque-Rigney
Laurent Patry-Beaudoin
Yi Hui Luo
Emre Aslan
John Marinos
Talal M. Alamri
Kim-Nhien Vu
Jessica Murphy-Lavallée
Jean-Sébastien Billiard
Emmanuel Montagnon
Hongliang Li
Samuel Kadoury
Bich Nguyen
Shanel Gauthier
Benjamin Thérien
Michael Chassé
Guy Cloutier
An Tang
Background Screening for nonalcoholic fatty liver disease (NAFLD) is suboptimal due to the subjective interpretation of US images. Purpose T… (see more)o evaluate the agreement and diagnostic performance of radiologists and a deep learning model in grading hepatic steatosis in NAFLD at US, with biopsy as the reference standard. Materials and Methods This retrospective study included patients with NAFLD and control patients without hepatic steatosis who underwent abdominal US and contemporaneous liver biopsy from September 2010 to October 2019. Six readers visually graded steatosis on US images twice, 2 weeks apart. Reader agreement was assessed with use of κ statistics. Three deep learning techniques applied to B-mode US images were used to classify dichotomized steatosis grades. Classification performance of human radiologists and the deep learning model for dichotomized steatosis grades (S0, S1, S2, and S3) was assessed with area under the receiver operating characteristic curve (AUC) on a separate test set. Results The study included 199 patients (mean age, 53 years ± 13 [SD]; 101 men). On the test set (n = 52), radiologists had fair interreader agreement (0.34 [95% CI: 0.31, 0.37]) for classifying steatosis grades S0 versus S1 or higher, while AUCs were between 0.49 and 0.84 for radiologists and 0.85 (95% CI: 0.83, 0.87) for the deep learning model. For S0 or S1 versus S2 or S3, radiologists had fair interreader agreement (0.30 [95% CI: 0.27, 0.33]), while AUCs were between 0.57 and 0.76 for radiologists and 0.73 (95% CI: 0.71, 0.75) for the deep learning model. For S2 or lower versus S3, radiologists had fair interreader agreement (0.37 [95% CI: 0.33, 0.40]), while AUCs were between 0.52 and 0.81 for radiologists and 0.67 (95% CI: 0.64, 0.69) for the deep learning model. Conclusion Deep learning approaches applied to B-mode US images provided comparable performance with human readers for detection and grading of hepatic steatosis. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Tuthill in this issue.
F66. FROM GENE TO COGNITION: MAPPING THE EFFECTS OF GENOMIC DELETIONS AND DUPLICATIONS ON COGNITIVE ABILITY
Sayeh Kazem
Kuldeep Kumar
Guillaume Huguet
Myriam Lizotte
Thomas Renne
Jakub Kopal
Stefan Horoi
Martineau Jean-Louis
Zohra Saci
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Graph topological property recovery with heat and wave dynamics-based features on graphs
Dhananjay Bhaskar
Yanlei Zhang
Charles Xu
Xingzhi Sun
Oluwadamilola Fasina
Maximilian Nickel
Michael Perlmutter
Smita Krishnaswamy