Portrait de David Rolnick

David Rolnick

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage automatique appliqué
Apprentissage automatique dans la modélisation climatique
Apprentissage automatique et changement climatique
Apprentissage automatique pour les sciences physiques
Biodiversité
Changement climatique
Climat
Détection hors distribution (OOD)
IA et durabilité
IA pour la science
IA pour le changement climatique
Modélisation climatique
Prévision des séries temporelles
Réduction d'échelle des variables climatiques
Science du climat
Surveillance des forêts
Systèmes de gestion de l'énergie des bâtiments
Systèmes énergétiques
Technologie de conservation
Télédétection
Télédétection par satellite
Théorie de l'apprentissage automatique
Végétation
Vision par ordinateur

Biographie

David Rolnick est professeur adjoint et titulaire d’une chaire en IA Canada-CIFAR à l'École d'informatique de l'Université McGill et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Ses travaux portent sur les applications de l'apprentissage automatique dans la lutte contre le changement climatique. Il est cofondateur et président de Climate Change AI et codirecteur scientifique de Sustainability in the Digital Age. David Rolnick a obtenu un doctorat en mathématiques appliquées du Massachusetts Institute of Technology (MIT). Il a été chercheur postdoctoral en sciences mathématiques à la National Science Foundation (NSF), chercheur diplômé à la NSF et boursier Fulbright. Il a figuré sur la liste des « 35 innovateurs de moins de 35 ans » de la MIT Technology Review en 2021.

Étudiants actuels

Collaborateur·rice de recherche
Collaborateur·rice alumni - McGill
Collaborateur·rice de recherche - Cambridge University
Co-superviseur⋅e :
Postdoctorat - McGill
Collaborateur·rice de recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche - N/A
Co-superviseur⋅e :
Maîtrise recherche - McGill
Collaborateur·rice de recherche - Leipzig University
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Visiteur de recherche indépendant - Politecnico di Milano
Visiteur de recherche indépendant
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche - Johannes Kepler University
Collaborateur·rice de recherche - University of Amsterdam
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Visiteur de recherche indépendant - Université de Montréal
Collaborateur·rice de recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - University of East Anglia
Collaborateur·rice de recherche
Collaborateur·rice de recherche - Columbia university
Postdoctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - University of Waterloo
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - McGill
Collaborateur·rice de recherche - Columbia university
Maîtrise recherche - McGill
Collaborateur·rice de recherche - University of Tübingen
Collaborateur·rice de recherche - Karlsruhe Institute of Technology
Doctorat - McGill
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Collaborateur·rice alumni - McGill

Publications

A machine learning pipeline for automated insect monitoring
M. Bunsen
L. Pasi
Maxim Larriv'ee
Climate change and other anthropogenic factors have led to a catastrophic decline in insects, endangering both biodiversity and the ecosyste… (voir plus)m services on which human society depends. Data on insect abundance, however, remains woefully inadequate. Camera traps, conventionally used for monitoring terrestrial vertebrates, are now being modified for insects, especially moths. We describe a complete, open-source machine learning-based software pipeline for automated monitoring of moths via camera traps, including object detection, moth/non-moth classification, fine-grained identification of moth species, and tracking individuals. We believe that our tools, which are already in use across three continents, represent the future of massively scalable data collection in entomology.
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Fragkiskos D. Malliaros
Alexandre AGM Duval
Linear Weight Interpolation Leads to Transient Performance Gains
The Butterfly Effect: Tiny Perturbations Cause Neural Network Training to Diverge
Neural network training begins with a chaotic phase in which the network is sensitive to small perturbations, such as those caused by stocha… (voir plus)stic gradient descent (SGD). This sensitivity can cause identically initialized networks to diverge both in parameter space and functional similarity. However, the exact degree to which networks are sensitive to perturbation, and the sensitivity of networks as they transition out of the chaotic phase, is unclear. To address this uncertainty, we apply a controlled perturbation at a single point in training time and measure its effect on otherwise identical training trajectories. We find that both the
A machine learning pipeline for automated insect monitoring
M. J. Bunsen
L. Pasi
Maxim Larrivée
Climate change and other anthropogenic factors have led to a catastrophic decline in insects, endangering both biodiversity and the ecosyste… (voir plus)m services on which human society depends. Data on insect abundance, however, remains woefully inadequate. Camera traps, conventionally used for monitoring terrestrial vertebrates, are now being modified for insects, especially moths. We describe a complete, open-source machine learning-based software pipeline for automated monitoring of moths via camera traps, including object detection, moth/non-moth classification, fine-grained identification of moth species, and tracking individuals. We believe that our tools, which are already in use across three continents, represent the future of massively scalable data collection in entomology.
Climate Variable Downscaling with Conditional Normalizing Flows
Predictions of global climate models typically operate on coarse spatial scales due to the large computational costs of climate simulations.… (voir plus) This has led to a considerable interest in methods for statistical downscaling, a similar process to super-resolution in the computer vision context, to provide more local and regional climate information. In this work, we apply conditional normalizing flows to the task of climate variable downscaling. We showcase its successful performance on an ERA5 water content dataset for different upsampling factors. Additionally, we show that the method allows us to assess the predictive uncertainty in terms of standard deviation from the fitted conditional distribution mean.
Position: Application-Driven Innovation in Machine Learning
Alan Aspuru-Guzik
Sara Beery
Bistra Dilkina
Priya L. Donti
Marzyeh Ghassemi
Hannah Kerner
Claire Monteleoni
Esther Rolf
Milind Tambe
Adam White
Application-Driven Innovation in Machine Learning
Alan Aspuru-Guzik
Sara Beery
Bistra Dilkina
Priya L. Donti
Marzyeh Ghassemi
Hannah Kerner
Claire Monteleoni
Esther Rolf
Milind Tambe
Adam White
As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly i… (voir plus)mportant. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.
Predicting Species Occurrence Patterns from Partial Observations
Mélisande Teng
To address the interlinked biodiversity and climate crises, we need an understanding of where species occur and how these patterns are chang… (voir plus)ing. However, observational data on most species remains very limited, and the amount of data available varies greatly between taxonomic groups. We introduce the problem of predicting species occurrence patterns given (a) satellite imagery, and (b) known information on the occurrence of other species. To evaluate algorithms on this task, we introduce SatButterfly, a dataset of satellite images, environmental data and observational data for butterflies, which is designed to pair with the existing SatBird dataset of bird observational data. To address this task, we propose a general model, R-Tran, for predicting species occurrence patterns that enables the use of partial observational data wherever found. We find that R-Tran outperforms other methods in predicting species encounter rates with partial information both within a taxon (birds) and across taxa (birds and butterflies). Our approach opens new perspectives to leveraging insights from species with abundant data to other species with scarce data, by modelling the ecosystems in which they co-occur.
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dj Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like Op… (voir plus)enAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
Stealing Part of a Production Language Model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dj Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like Op… (voir plus)enAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \