Portrait of David Rolnick

David Rolnick

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Machine Learning Theory

Biography

David Rolnick is an assistant professor at McGill University’s School of Computer Science, a core academic member of Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair. Rolnick’s work focuses on applications of machine learning to help address climate change. He is the co-founder and chair of Climate Change AI, and scientific co-director of Sustainability in the Digital Age. After completing his PhD in applied mathematics at the Massachusetts Institute of Technology (MIT), he was a NSF Mathematical Sciences Postdoctoral Research Fellow, an NSF Graduate Research Fellow and a Fulbright Scholar. He was named to MIT Technology Review’s “35 Innovators Under 35” in 2021.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Co-supervisor :
Postdoctorate - McGill University
Collaborating researcher - McGill University
Collaborating researcher - N/A
Co-supervisor :
Master's Research - McGill University
Collaborating researcher - Leipzig University
Collaborating researcher
Collaborating researcher
Independent visiting researcher
Collaborating researcher - Université de Montréal
Collaborating researcher - Johannes Kepler University
Collaborating researcher - University of Amsterdam
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Collaborating researcher
Collaborating researcher
Research Intern - Université de Montréal
Collaborating researcher - Columbia university
Postdoctorate - McGill University
Co-supervisor :
PhD - University of Waterloo
Co-supervisor :
Collaborating Alumni - Université de Montréal
Master's Research - McGill University
Collaborating researcher - Columbia university
Collaborating researcher - University of Tübingen
Collaborating researcher - Karlsruhe Institute of Technology
PhD - McGill University
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher
PhD - McGill University
Collaborating Alumni - McGill University

Publications

FoMo-Bench: a multi-modal, multi-scale and multi-task Forest Monitoring Benchmark for remote sensing foundation models
Nikolaos Ioannis Bountos
Arthur Ouaknine
Ioannis Papoutsis
FoMo-Bench: a multi-modal, multi-scale and multi-task Forest Monitoring Benchmark for remote sensing foundation models
Nikolaos Ioannis Bountos
Arthur Ouaknine
Forests are an essential part of Earth's ecosystems and natural systems, as well as providing services on which humanity depends, yet they a… (see more)re rapidly changing as a result of land use decisions and climate change. Understanding and mitigating negative effects requires parsing data on forests at global scale from a broad array of sensory modalities, and recently many such problems have been approached using machine learning algorithms for remote sensing. To date, forest-monitoring problems have largely been addressed in isolation. Inspired by the rise of foundation models for computer vision and remote sensing, we here present the first unified Forest Monitoring Benchmark (FoMo-Bench). FoMo-Bench consists of 15 diverse datasets encompassing satellite, aerial, and inventory data, covering a variety of geographical regions, and including multispectral, red-green-blue, synthetic aperture radar (SAR) and LiDAR data with various temporal, spatial and spectral resolutions. FoMo-Bench includes multiple types of forest-monitoring tasks, spanning classification, segmentation, and object detection. To further enhance the diversity of tasks and geographies represented in FoMo-Bench, we introduce a novel global dataset, TalloS, combining satellite imagery with ground-based annotations for tree species classification, encompassing 1,000+ categories across multiple hierarchical taxonomic levels (species, genus, family). Finally, we propose FoMo-Net, a baseline foundation model with the capacity to process any combination of commonly used spectral bands in remote sensing, across diverse ground sampling distances and geographical locations worldwide. This work aims to inspire research collaborations between machine learning and forest biology researchers in exploring scalable multi-modal and multi-task models for forest monitoring. All code and data will be made publicly available.
Towards Causal Representations of Climate Model Data
Julien Boussard
Chandni Nagda
Julia Kaltenborn
Charlotte Emilie Elektra Lange
Philippe Brouillard
Yaniv Gurwicz
Peer Nowack
Climate models, such as Earth system models (ESMs), are crucial for simulating future climate change based on projected Shared Socioeconomic… (see more) Pathways (SSP) greenhouse gas emissions scenarios. While ESMs are sophisticated and invaluable, machine learning-based emulators trained on existing simulation data can project additional climate scenarios much faster and are computationally efficient. However, they often lack generalizability and interpretability. This work delves into the potential of causal representation learning, specifically the \emph{Causal Discovery with Single-parent Decoding} (CDSD) method, which could render climate model emulation efficient \textit{and} interpretable. We evaluate CDSD on multiple climate datasets, focusing on emissions, temperature, and precipitation. Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.
Towards Climate Variable Prediction with Conditioned Spatio-Temporal Normalizing Flows
Christina Winkler
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Biodiversity is declining at an unprecedented rate, impacting ecosystem services necessary to ensure food, water, and human health and well-… (see more)being. Understanding the distribution of species and their habitats is crucial for conservation policy planning. However, traditional methods in ecology for species distribution models (SDMs) generally focus either on narrow sets of species or narrow geographical areas and there remain significant knowledge gaps about the distribution of species. A major reason for this is the limited availability of data traditionally used, due to the prohibitive amount of effort and expertise required for traditional field monitoring. The wide availability of remote sensing data and the growing adoption of citizen science tools to collect species observations data at low cost offer an opportunity for improving biodiversity monitoring and enabling the modelling of complex ecosystems. We introduce a novel task for mapping bird species to their habitats by predicting species encounter rates from satellite images, and present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird, considering summer (breeding) and winter seasons. We also provide a dataset in Kenya representing low-data regimes. We additionally provide environmental data and species range maps for each location. We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks. SatBird opens up possibilities for scalably modelling properties of ecosystems worldwide.
OpenForest: A data catalogue for machine learning in forest monitoring
Arthur Ouaknine
Teja Kattenborn
Etienne Lalibert'e
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre AGM Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
The use of machine learning for material property prediction and discovery has traditionally centered on graph neural networks that incorpor… (see more)ate the geometric configuration of all atoms. However, in practice not all this information may be readily available, e.g.~when evaluating the potentially unknown binding of adsorbates to catalyst. In this paper, we investigate whether it is possible to predict a system's relaxed energy in the OC20 dataset while ignoring the relative position of the adsorbate with respect to the electro-catalyst. We consider SchNet, DimeNet++ and FAENet as base architectures and measure the impact of four modifications on model performance: removing edges in the input graph, pooling independent representations, not sharing the backbone weights and using an attention mechanism to propagate non-geometric relative information. We find that while removing binding site information impairs accuracy as expected, modified models are able to predict relaxed energies with remarkably decent MAE. Our work suggests future research directions in accelerated materials discovery where information on reactant configurations can be reduced or altogether omitted.
ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning
Julia Kaltenborn
Charlotte Emilie Elektra Lange
Venkatesh Ramesh
Philippe Brouillard
Yaniv Gurwicz
Chandni Nagda
Jakob Runge
Peer Nowack
Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) c… (see more)ommunity has taken an increased interest in supporting climate scientists’ efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a “super-emulator” can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.
SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Multi-variable Hard Physical Constraints for Climate Model Downscaling
Jose Gonz'alez-Abad
'Alex Hern'andez-Garc'ia
Paula Harder
Jos'e Manuel Guti'errez
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre AGM Duval
Victor Schmidt
Alex Hernandez-Garcia
Santiago Miret
Fragkiskos D. Malliaros
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to speci… (see more)fic symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Hidden Symmetries of ReLU Networks
J. Grigsby
Elisenda Grigsby
Kathryn Lindsey