Portrait of David Rolnick

David Rolnick

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Machine Learning Theory

Biography

David Rolnick is an assistant professor at McGill University’s School of Computer Science, a core academic member of Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair. Rolnick’s work focuses on applications of machine learning to help address climate change. He is the co-founder and chair of Climate Change AI, and scientific co-director of Sustainability in the Digital Age. After completing his PhD in applied mathematics at the Massachusetts Institute of Technology (MIT), he was a NSF Mathematical Sciences Postdoctoral Research Fellow, an NSF Graduate Research Fellow and a Fulbright Scholar. He was named to MIT Technology Review’s “35 Innovators Under 35” in 2021.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Co-supervisor :
Collaborating researcher - The University of Dresden, Helmholtz Centre for Environmental Research Leipzig
Collaborating researcher
Collaborating researcher - National Observatory of Athens
Postdoctorate - McGill University
Collaborating researcher - McGill University
Collaborating researcher - N/A
Co-supervisor :
Master's Research - McGill University
Research Intern - Leipzig University
Collaborating researcher
Collaborating researcher
Independent visiting researcher
Collaborating researcher - Université de Montréal
Collaborating researcher - Johannes Kepler University
Collaborating researcher - University of Amsterdam
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Collaborating researcher
Collaborating researcher - University of Waterloo
Collaborating researcher
Research Intern - Université de Montréal
Postdoctorate - McGill University
Co-supervisor :
PhD - University of Waterloo
Co-supervisor :
PhD - Université de Montréal
Master's Research - McGill University
Collaborating researcher - University of Tübingen
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Co-supervisor :
Collaborating researcher - Karlsruhe Institute of Technology
PhD - McGill University
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher
PhD - McGill University
Collaborating Alumni - McGill University

Publications

Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Pushing the frontiers in climate modelling and analysis with machine learning
Veronika Eyring
William D. Collins
Pierre Gentine
Elizabeth A. Barnes
Marcelo Barreiro
Tom Beucler
Marc Bocquet
Christopher S. Bretherton
Hannah M. Christensen
Katherine Dagon
David John Gagne
David Hall
Dorit Hammerling
Stephan Hoyer
Fernando Iglesias-Suarez
Ignacio Lopez-Gomez
Marie C. McGraw
Gerald A. Meehl
Maria J. Molina
Claire Monteleoni … (see 9 more)
Juliane Mueller
Michael S. Pritchard
Jakob Runge
Philip Stier
Oliver Watt-Meyer
Katja Weigel
Rose Yu
Laure Zanna
Tree semantic segmentation from aerial image time series
Venkatesh Ramesh
Arthur Ouaknine
Evaluating the transferability potential of deep learning models for climate downscaling
Ayush Prasad
Paula Harder
Qidong Yang
Prasanna Sattegeri
Daniela Szwarcman
Campbell Watson
Climate downscaling, the process of generating high-resolution climate data from low-resolution simulations, is essential for understanding … (see more)and adapting to climate change at regional and local scales. Deep learning approaches have proven useful in tackling this problem. However, existing studies usually focus on training models for one specific task, location and variable, which are therefore limited in their generalizability and transferability. In this paper, we evaluate the efficacy of training deep learning downscaling models on multiple diverse climate datasets to learn more robust and transferable representations. We evaluate the effectiveness of architectures zero-shot transferability using CNNs, Fourier Neural Operators (FNOs), and vision Transformers (ViTs). We assess the spatial, variable, and product transferability of downscaling models experimentally, to understand the generalizability of these different architecture types.
Evaluating the transferability potential of deep learning models for climate downscaling
Ayush Prasad
Paula Harder
Qidong Yang
Prasanna Sattegeri
Daniela Szwarcman
Campbell Watson
Climate downscaling, the process of generating high-resolution climate data from low-resolution simulations, is essential for understanding … (see more)and adapting to climate change at regional and local scales. Deep learning approaches have proven useful in tackling this problem. However, existing studies usually focus on training models for one specific task, location and variable, which are therefore limited in their generalizability and transferability. In this paper, we evaluate the efficacy of training deep learning downscaling models on multiple diverse climate datasets to learn more robust and transferable representations. We evaluate the effectiveness of architectures zero-shot transferability using CNNs, Fourier Neural Operators (FNOs), and vision Transformers (ViTs). We assess the spatial, variable, and product transferability of downscaling models experimentally, to understand the generalizability of these different architecture types.
Stealing part of a production language model
Nicholas Carlini
Daniel Paleka
Krishnamurthy Dj Dvijotham
Thomas Steinke
Jonathan Hayase
A. Feder Cooper
Katherine Lee
Matthew Jagielski
Milad Nasr
Arthur Conmy
Eric Wallace
Florian Tramèr
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like … (see more)OpenAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \\
Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects
D. B. Roy
David Roy
J. Alison
Tom August
M. Bélisle
K. Bjerge
J. J. Bowden
M. J. Bunsen
F. Cunha
Q. Geissmann
K. Goldmann
Alba Gomez-Segura
A. Jain
C. Huijbers
M. Larrivée
J. L. Lawson
H. M. Mann
M. J. Mazerolle
K. P. McFarland
L. Pasi … (see 8 more)
S. Peters
N. Pinoy
G. L. Skinner
O. T. Strickson
A. Svenning
S. Teagle
Toke Thomas Høye
Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and faste… (see more)st developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects—from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
Insect Identification in the Wild: The AMI Dataset
Aditya Jain
Fagner Cunha
M. Bunsen
Juan Sebasti'an Canas
L. Pasi
N. Pinoy
Flemming Helsing
JoAnne Russo
Marc Botham
Michael Sabourin
Jonathan Fr'echette
Alexandre Anctil
Yacksecari Lopez
Eduardo Navarro
Filonila Perez Pimentel
Ana Cecilia Zamora
José Alejandro Ramirez Silva
Jonathan Gagnon
T. August
Kim Bjerge … (see 8 more)
Alba Gomez Segura
Marc B'elisle
Yves Basset
K. P. McFarland
David Roy
Toke Thomas Høye
Maxim Larriv'ee
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing, with severe implications for ecosystems… (see more) and agriculture. Despite this crisis, data on insect diversity and abundance remain woefully inadequate, due to the scarcity of human experts and the lack of scalable tools for monitoring. Ecologists have started to adopt camera traps to record and study insects, and have proposed computer vision algorithms as an answer for scalable data processing. However, insect monitoring in the wild poses unique challenges that have not yet been addressed within computer vision, including the combination of long-tailed data, extremely similar classes, and significant distribution shifts. We provide the first large-scale machine learning benchmarks for fine-grained insect recognition, designed to match real-world tasks faced by ecologists. Our contributions include a curated dataset of images from citizen science platforms and museums, and an expert-annotated dataset drawn from automated camera traps across multiple continents, designed to test out-of-distribution generalization under field conditions. We train and evaluate a variety of baseline algorithms and introduce a combination of data augmentation techniques that enhance generalization across geographies and hardware setups.
A machine learning pipeline for automated insect monitoring
Aditya Jain
Fagner Cunha
M. Bunsen
L. Pasi
Anna Viklund
Maxim Larriv'ee
Climate change and other anthropogenic factors have led to a catastrophic decline in insects, endangering both biodiversity and the ecosyste… (see more)m services on which human society depends. Data on insect abundance, however, remains woefully inadequate. Camera traps, conventionally used for monitoring terrestrial vertebrates, are now being modified for insects, especially moths. We describe a complete, open-source machine learning-based software pipeline for automated monitoring of moths via camera traps, including object detection, moth/non-moth classification, fine-grained identification of moth species, and tracking individuals. We believe that our tools, which are already in use across three continents, represent the future of massively scalable data collection in entomology.
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Ali Ramlaoui
Théo Saulus
Basile Terver
Victor Schmidt
Fragkiskos D. Malliaros
Alexandre AGM Duval