A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Interpreting the predictions of existing Question Answering (QA) models is critical to many real-world intelligent applications, such as QA … (see more)systems for healthcare, education, and finance. However, existing QA models lack interpretability and provide no feedback or explanation for end-users to help them understand why a specific prediction is the answer to a question. In this research, we argue that the evidences of an answer is critical to enhancing the interpretability of QA models. Unlike previous research that simply extracts several sentence(s) in the context as evidence, we are the first to explicitly define the concept of evidence as the supporting facts in a context which are informative, concise, and readable. Besides, we provide effective strategies to quantitatively measure the informativeness, conciseness and readability of evidence. Furthermore, we propose Grow-and-Clip Evidence Distillation (GCED) algorithm to extract evidences from the contexts by trade-off informativeness, conciseness, and readability. We conduct extensive experiments on the SQuAD and TriviaQA datasets with several baseline models to evaluate the effect of GCED on interpreting answers to questions. Human evaluation are also carried out to check the quality of distilled evidences. Experimental results show that automatic distilled evidences have human-like informativeness, conciseness and readability, which can enhance the interpretability of the answers to questions.
2022-05-09
2022 IEEE 38th International Conference on Data Engineering (ICDE) (published)
Interpreting the predictions of existing Question Answering (QA) models is critical to many real-world intelligent applications, such as QA … (see more)systems for healthcare, education, and finance. However, existing QA models lack interpretability and provide no feedback or explanation for end-users to help them understand why a specific prediction is the answer to a question. In this research, we argue that the evidences of an answer is critical to enhancing the interpretability of QA models. Unlike previous research that simply extracts several sentence(s) in the context as evidence, we are the first to explicitly define the concept of evidence as the supporting facts in a context which are informative, concise, and readable. Besides, we provide effective strategies to quantitatively measure the informativeness, conciseness and readability of evidence. Furthermore, we propose Grow-and-Clip Evidence Distillation (GCED) algorithm to extract evidences from the contexts by trade-off informativeness, conciseness, and readability. We conduct extensive experiments on the SQuAD and TriviaQA datasets with several baseline models to evaluate the effect of GCED on interpreting answers to questions. Human evaluation are also carried out to check the quality of distilled evidences. Experimental results show that automatic distilled evidences have human-like informativeness, conciseness and readability, which can enhance the interpretability of the answers to questions.