Portrait de David Rolnick

David Rolnick

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Théorie de l'apprentissage automatique

Biographie

David Rolnick est professeur adjoint et titulaire d’une chaire en IA Canada-CIFAR à l'École d'informatique de l'Université McGill et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Ses travaux portent sur les applications de l'apprentissage automatique dans la lutte contre le changement climatique. Il est cofondateur et président de Climate Change AI et codirecteur scientifique de Sustainability in the Digital Age. David Rolnick a obtenu un doctorat en mathématiques appliquées du Massachusetts Institute of Technology (MIT). Il a été chercheur postdoctoral en sciences mathématiques à la National Science Foundation (NSF), chercheur diplômé à la NSF et boursier Fulbright. Il a figuré sur la liste des « 35 innovateurs de moins de 35 ans » de la MIT Technology Review en 2021.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Co-superviseur⋅e :
Collaborateur·rice de recherche - The University of Dresden, Helmholtz Centre for Environmental Research Leipzig
Collaborateur·rice de recherche
Collaborateur·rice de recherche - National Observatory of Athens
Postdoctorat - McGill
Collaborateur·rice de recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche - N/A
Co-superviseur⋅e :
Maîtrise recherche - McGill
Stagiaire de recherche - Leipzig University
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Visiteur de recherche indépendant
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche - Johannes Kepler University
Collaborateur·rice de recherche - University of Amsterdam
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche - University of Waterloo
Collaborateur·rice de recherche
Stagiaire de recherche - UdeM
Postdoctorat - McGill
Co-superviseur⋅e :
Doctorat - University of Waterloo
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - McGill
Collaborateur·rice de recherche - University of Tübingen
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Co-superviseur⋅e :
Collaborateur·rice de recherche - Karlsruhe Institute of Technology
Doctorat - McGill
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Collaborateur·rice alumni - McGill

Publications

FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre AGM Duval
Victor Schmidt
Alex Hernandez-Garcia
Santiago Miret
Fragkiskos D. Malliaros
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to speci… (voir plus)fic symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Lightweight, Pre-trained Transformers for Remote Sensing Timeseries
Gabriel Tseng
Ruben Cartuyvels
Ivan Zvonkov
Mirali Purohit
Hannah Kerner
Machine learning methods for satellite data have a range of societally relevant applications, but labels used to train models can be difficu… (voir plus)lt or impossible to acquire. Self-supervision is a natural solution in settings with limited labeled data, but current self-supervised models for satellite data fail to take advantage of the characteristics of that data, including the temporal dimension (which is critical for many applications, such as monitoring crop growth) and availability of data from many complementary sensors (which can significantly improve a model's predictive performance). We present Presto (the Pretrained Remote Sensing Transformer), a model pre-trained on remote sensing pixel-timeseries data. By designing Presto specifically for remote sensing data, we can create a significantly smaller but performant model. Presto excels at a wide variety of globally distributed remote sensing tasks and performs competitively with much larger models while requiring far less compute. Presto can be used for transfer learning or as a feature extractor for simple models, enabling efficient deployment at scale.
Maximal Initial Learning Rates in Deep ReLU Networks
Gaurav Iyer
Boris Hanin
Training a neural network requires choosing a suitable learning rate, which involves a trade-off between speed and effectiveness of converge… (voir plus)nce. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate
Semi-Supervised Object Detection for Agriculture
Gabriel Tseng
Krisztina Sinkovics
Tom Watsham
Thomas C. Walters
Bugs in the Data: How ImageNet Misrepresents Biodiversity
Alexandra Luccioni
ImageNet-1k is a dataset often used for benchmarking machine learning (ML) models and evaluating tasks such as image recognition and object … (voir plus)detection. Wild animals make up 27% of ImageNet-1k but, unlike classes representing people and objects, these data have not been closely scrutinized. In the current paper, we analyze the 13,450 images from 269 classes that represent wild animals in the ImageNet-1k validation set, with the participation of expert ecologists. We find that many of the classes are ill-defined or overlapping, and that 12% of the images are incorrectly labeled, with some classes having >90% of images incorrect. We also find that both the wildlife-related labels and images included in ImageNet-1k present significant geographical and cultural biases, as well as ambiguities such as artificial animals, multiple species in the same image, or the presence of humans. Our findings highlight serious issues with the extensive use of this dataset for evaluating ML systems, the use of such algorithms in wildlife-related tasks, and more broadly the ways in which ML datasets are commonly created and curated.
Deep Networks as Paths on the Manifold of Neural Representations
Richard D Lange
Devin Kwok
Jordan Kyle Matelsky
Xinyue Wang
Konrad Paul Kording
General Purpose AI Systems in the AI Act: Trying to Fit a Square Peg Into a Round Hole
Claire Boine
Normalization Layers Are All That Sharpness-Aware Minimization Needs
Maximilian Mueller
Tiffany Joyce Vlaar
Matthias Hein
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in va… (voir plus)rious settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre AGM Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electro… (voir plus)chemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42
Digitalization and the Anthropocene
Felix Creutzig
Daron Acemoglu
Xuemei Bai
Paul N. Edwards
Marie Josefine Hintz
Lynn H. Kaack
Siir Kilkis
Stefanie Kunkel
Amy Luers
Nikola Milojevic-Dupont
Dave Rejeski
Jürgen Renn
Christoph Rosol
Daniela Russ
Thomas Turnbull
Elena Verdolini
Felix Wagner
Charlie Wilson
Aicha Zekar … (voir 1 de plus)
Marius Zumwald
Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically i… (voir plus)ncreased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: ( a) planetary boundaries and stability, ( b) equity within and between countries, and ( c) human agency and governance, mediated via ( i) increasing resource efficiency, ( ii) accelerating consumption and scale effects, ( iii) expanding political and economic control, and ( iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability. Expected final online publication date for the Annual Review of Environment and Resources, Volume 47 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
A portrait of the different configurations between digitally-enabled innovations and climate governance
Pierre J. C. Chuard
Jennifer Garard
Karsten A. Schulz
Nilushi Kumarasinghe
Damon Matthews
Neural Networks as Paths through the Space of Representations
Richard D Lange
Devin Kwok
Jordan Kyle Matelsky
Xinyue Wang
Konrad Paul Kording