Portrait de David Rolnick

David Rolnick

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage automatique appliqué
Apprentissage automatique dans la modélisation climatique
Apprentissage automatique et changement climatique
Apprentissage automatique pour les sciences physiques
Biodiversité
Changement climatique
Climat
Détection hors distribution (OOD)
IA et durabilité
IA pour la science
IA pour le changement climatique
Modélisation climatique
Prévision des séries temporelles
Réduction d'échelle des variables climatiques
Science du climat
Surveillance des forêts
Systèmes de gestion de l'énergie des bâtiments
Systèmes énergétiques
Technologie de conservation
Télédétection
Télédétection par satellite
Théorie de l'apprentissage automatique
Végétation
Vision par ordinateur

Biographie

David Rolnick est professeur adjoint et titulaire d’une chaire en IA Canada-CIFAR à l'École d'informatique de l'Université McGill et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Ses travaux portent sur les applications de l'apprentissage automatique dans la lutte contre le changement climatique. Il est cofondateur et président de Climate Change AI et codirecteur scientifique de Sustainability in the Digital Age. David Rolnick a obtenu un doctorat en mathématiques appliquées du Massachusetts Institute of Technology (MIT). Il a été chercheur postdoctoral en sciences mathématiques à la National Science Foundation (NSF), chercheur diplômé à la NSF et boursier Fulbright. Il a figuré sur la liste des « 35 innovateurs de moins de 35 ans » de la MIT Technology Review en 2021.

Étudiants actuels

Collaborateur·rice de recherche
Collaborateur·rice alumni - McGill
Collaborateur·rice de recherche - Cambridge University
Co-superviseur⋅e :
Postdoctorat - McGill
Collaborateur·rice de recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche - N/A
Co-superviseur⋅e :
Maîtrise recherche - McGill
Collaborateur·rice de recherche - Leipzig University
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Visiteur de recherche indépendant - Politecnico di Milano
Visiteur de recherche indépendant
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche - Johannes Kepler University
Collaborateur·rice de recherche - University of Amsterdam
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Visiteur de recherche indépendant - Université de Montréal
Collaborateur·rice de recherche - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - University of East Anglia
Collaborateur·rice de recherche
Collaborateur·rice de recherche - Columbia university
Postdoctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - University of Waterloo
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - McGill
Collaborateur·rice de recherche - Columbia university
Maîtrise recherche - McGill
Collaborateur·rice de recherche - University of Tübingen
Collaborateur·rice de recherche - Karlsruhe Institute of Technology
Doctorat - McGill
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Doctorat - McGill
Collaborateur·rice alumni - McGill

Publications

Towards Climate Variable Prediction with Conditioned Spatio-Temporal Normalizing Flows
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Biodiversity is declining at an unprecedented rate, impacting ecosystem services necessary to ensure food, water, and human health and well-… (voir plus)being. Understanding the distribution of species and their habitats is crucial for conservation policy planning. However, traditional methods in ecology for species distribution models (SDMs) generally focus either on narrow sets of species or narrow geographical areas and there remain significant knowledge gaps about the distribution of species. A major reason for this is the limited availability of data traditionally used, due to the prohibitive amount of effort and expertise required for traditional field monitoring. The wide availability of remote sensing data and the growing adoption of citizen science tools to collect species observations data at low cost offer an opportunity for improving biodiversity monitoring and enabling the modelling of complex ecosystems. We introduce a novel task for mapping bird species to their habitats by predicting species encounter rates from satellite images, and present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird, considering summer (breeding) and winter seasons. We also provide a dataset in Kenya representing low-data regimes. We additionally provide environmental data and species range maps for each location. We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks. SatBird opens up possibilities for scalably modelling properties of ecosystems worldwide.
OpenForest: A data catalogue for machine learning in forest monitoring
Teja Kattenborn
Etienne Lalibert'e
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre AGM Duval
Santiago Miret
The use of machine learning for material property prediction and discovery has traditionally centered on graph neural networks that incorpor… (voir plus)ate the geometric configuration of all atoms. However, in practice not all this information may be readily available, e.g.~when evaluating the potentially unknown binding of adsorbates to catalyst. In this paper, we investigate whether it is possible to predict a system's relaxed energy in the OC20 dataset while ignoring the relative position of the adsorbate with respect to the electro-catalyst. We consider SchNet, DimeNet++ and FAENet as base architectures and measure the impact of four modifications on model performance: removing edges in the input graph, pooling independent representations, not sharing the backbone weights and using an attention mechanism to propagate non-geometric relative information. We find that while removing binding site information impairs accuracy as expected, modified models are able to predict relaxed energies with remarkably decent MAE. Our work suggests future research directions in accelerated materials discovery where information on reactant configurations can be reduced or altogether omitted.
ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning
Charlotte Emilie Elektra Lange
Yaniv Gurwicz
Jakob Runge
Peer Nowack
Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) c… (voir plus)ommunity has taken an increased interest in supporting climate scientists’ efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a “super-emulator” can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.
SatBird: a Dataset for Bird Species Distribution Modeling using Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Multi-variable Hard Physical Constraints for Climate Model Downscaling
Jose Gonz'alez-Abad
'Alex Hern'andez-Garc'ia
Jos'e Manuel Guti'errez
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre AGM Duval
Santiago Miret
Fragkiskos D. Malliaros
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to speci… (voir plus)fic symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Hidden Symmetries of ReLU Networks
J. Grigsby
Elisenda Grigsby
Kathryn Lindsey
Maximal Initial Learning Rates in Deep ReLU Networks
Fourier Neural Operators for Arbitrary Resolution Climate Data Downscaling
Prasanna Sattegeri
D. Szwarcman
Campbell Watson
Climate simulations are essential in guiding our understanding of climate change and responding to its effects. However, it is computational… (voir plus)ly expensive to resolve complex climate processes at high spatial resolution. As one way to speed up climate simulations, neural networks have been used to downscale climate variables from fast-running low-resolution simulations, but high-resolution training data are often unobtainable or scarce, greatly limiting accuracy. In this work, we propose a downscaling method based on the Fourier neural operator. It trains with data of a small upsampling factor and then can zero-shot downscale its input to arbitrary unseen high resolution. Evaluated both on ERA5 climate model data and on the Navier-Stokes equation solution data, our downscaling model significantly outperforms state-of-the-art convolutional and generative adversarial downscaling models, both in standard single-resolution downscaling and in zero-shot generalization to higher upsampling factors. Furthermore, we show that our method also outperforms state-of-the-art data-driven partial differential equation solvers on Navier-Stokes equations. Overall, our work bridges the gap between simulation of a physical process and interpolation of low-resolution output, showing that it is possible to combine both approaches and significantly improve upon each other.
Bird Distribution Modelling using Remote Sensing and Citizen Science data
Mélisande Teng
Amna Elmustafa
Benjamin Akera