Portrait de Chris Pal

Chris Pal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Polytechnique Montréal, Département de génie informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Christopher Pal est titulaire d'une chaire en IA Canada-CIFAR, professeur titulaire à Polytechnique Montréal et professeur adjoint au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il est également chercheur émérite à ServiceNow Research. Il est engagé dans la recherche sur l'intelligence artificielle et l'apprentissage automatique depuis plus de 25 ans, publiant souvent des travaux sur les méthodes de modélisation du langage à grande échelle et les techniques de modélisation générative. Il a obtenu un doctorat en informatique à l'Université de Waterloo.

Étudiants actuels

Collaborateur·rice de recherche - Formerly McGill (but ending)
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - Polytechnique
Doctorat - Polytechnique
Maîtrise recherche - Polytechnique
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - Polytechnique
Doctorat - Polytechnique
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Doctorat - UdeM

Publications

Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Brain tumor segmentation with Deep Neural Networks
Mohammad Havaei
Axel Davy
David Warde-Farley
Antoine Biard
Pierre-Marc Jodoin
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
J'anos Kram'ar
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
We propose zoneout, a novel method for regularizing RNNs. At each timestep, zoneout stochastically forces some hidden units to maintain thei… (voir plus)r previous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving generalization. But by preserving instead of dropping hidden units, gradient information and state information are more readily propagated through time, as in feedforward stochastic depth networks. We perform an empirical investigation of various RNN regularizers, and find that zoneout gives significant performance improvements across tasks. We achieve competitive results with relatively simple models in character- and word-level language modelling on the Penn Treebank and Text8 datasets, and combining with recurrent batch normalization yields state-of-the-art results on permuted sequential MNIST.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (voir plus)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (voir plus)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (voir plus)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (voir plus)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele