Portrait de Chris Pal

Chris Pal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Polytechnique Montréal, Département de génie informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Christopher Pal est titulaire d'une chaire en IA Canada-CIFAR, professeur titulaire à Polytechnique Montréal et professeur adjoint au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il est également chercheur émérite à ServiceNow Research. Il est engagé dans la recherche sur l'intelligence artificielle et l'apprentissage automatique depuis plus de 25 ans, publiant souvent des travaux sur les méthodes de modélisation du langage à grande échelle et les techniques de modélisation générative. Il a obtenu un doctorat en informatique à l'Université de Waterloo.

Étudiants actuels

Stagiaire de recherche - McGill
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - Polytechnique
Doctorat - Polytechnique
Postdoctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - Polytechnique
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - Polytechnique
Doctorat - Polytechnique
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique

Publications

Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
Chinnadhurai Sankar
Sandeep Subramanian
Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily ad… (voir plus)apted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.
Towards Standardization of Data Licenses: The Montreal Data License
Misha Benjamin
P. Gagnon
Alex Shee
This paper provides a taxonomy for the licensing of data in the fields of artificial intelligence and machine learning. The paper's goal is … (voir plus)to build towards a common framework for data licensing akin to the licensing of open source software. Increased transparency and resolving conceptual ambiguities in existing licensing language are two noted benefits of the approach proposed in the paper. In parallel, such benefits may help foster fairer and more efficient markets for data through bringing about clearer tools and concepts that better define how data can be used in the fields of AI and ML. The paper's approach is summarized in a new family of data license language - \textit{the Montreal Data License (MDL)}. Alongside this new license, the authors and their collaborators have developed a web-based tool to generate license language espousing the taxonomies articulated in this paper.
Deep Learning for Automated Segmentation of Liver Lesions at CT in Patients with Colorectal Cancer Liver Metastases.
Eugene Vorontsov
Milena Cerny
Philippe Régnier
Lisa Di Jorio
Réal Lapointe
Franck Vandenbroucke-Menu
Simon Turcotte
Samuel Kadoury
An Tang
Purpose To evaluate the performance, agreement, and efficiency of a fully convolutional network (FCN) for liver lesion detection and segment… (voir plus)ation at CT examinations in patients with colorectal liver metastases (CLMs). Materials and Methods This retrospective study evaluated an automated method using an FCN that was trained, validated, and tested with 115, 15, and 26 contrast material-enhanced CT examinations containing 261, 22, and 105 lesions, respectively. Manual detection and segmentation by a radiologist was the reference standard. Performance of fully automated and user-corrected segmentations was compared with that of manual segmentations. The interuser agreement and interaction time of manual and user-corrected segmentations were assessed. Analyses included sensitivity and positive predictive value of detection, segmentation accuracy, Cohen κ, Bland-Altman analyses, and analysis of variance. Results In the test cohort, for lesion size smaller than 10 mm (n = 30), 10-20 mm (n = 35), and larger than 20 mm (n = 40), the detection sensitivity of the automated method was 10%, 71%, and 85%; positive predictive value was 25%, 83%, and 94%; Dice similarity coefficient was 0.14, 0.53, and 0.68; maximum symmetric surface distance was 5.2, 6.0, and 10.4 mm; and average symmetric surface distance was 2.7, 1.7, and 2.8 mm, respectively. For manual and user-corrected segmentation, κ values were 0.42 (95% confidence interval: 0.24, 0.63) and 0.52 (95% confidence interval: 0.36, 0.72); normalized interreader agreement for lesion volume was -0.10 ± 0.07 (95% confidence interval) and -0.10 ± 0.08; and mean interaction time was 7.7 minutes ± 2.4 (standard deviation) and 4.8 minutes ± 2.1 (P .001), respectively. Conclusion Automated detection and segmentation of CLM by using deep learning with convolutional neural networks, when manually corrected, improved efficiency but did not substantially change agreement on volumetric measurements.© RSNA, 2019Supplemental material is available for this article.
On Adversarial Mixup Resynthesis
Christopher Beckham
Sina Honari
Alex Lamb
Vikas Verma
Farnoosh Ghadiri
In this paper, we explore new approaches to combining information encoded within the learned representations of auto-encoders. We explore mo… (voir plus)dels that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semi-supervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research.
Adversarial Mixup Resynthesizers
Christopher Beckham
Sina Honari
Alex Lamb
Vikas Verma
Farnoosh Ghadiri
In this paper, we explore new approaches to combining information encoded within the learned representations of autoencoders. We explore mod… (voir plus)els that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semi-supervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research.
Neural Multisensory Scene Inference
Jae Hyun Lim
Pedro O. Pinheiro
Sungjin Ahn
For embodied agents to infer representations of the underlying 3D physical world they inhabit, they should efficiently combine multisensory … (voir plus)cues from numerous trials, e.g., by looking at and touching objects. Despite its importance, multisensory 3D scene representation learning has received less attention compared to the unimodal setting. In this paper, we propose the Generative Multisensory Network (GMN) for learning latent representations of 3D scenes which are partially observable through multiple sensory modalities. We also introduce a novel method, called the Amortized Product-of-Experts, to improve the computational efficiency and the robustness to unseen combinations of modalities at test time. Experimental results demonstrate that the proposed model can efficiently infer robust modality-invariant 3D-scene representations from arbitrary combinations of modalities and perform accurate cross-modal generation. To perform this exploration we have also developed a novel multi-sensory simulation environment for embodied agents.
Real-Time Reinforcement Learning
Simon Ramstedt
Recurrent transition networks for character locomotion
Félix Harvey
We present a novel approach, based on deep recurrent neural networks, to automatically generate transition animations given a past context o… (voir plus)f a few frames, a target character state and optionally local terrain information. The proposed Recurrent Transition Network (RTN) is trained without any gait, phase, contact or action labels. Our system produces realistic and fluid transitions that rival the quality of Motion Capture-based animations, even without any inverse-kinematics post-process. Our system could accelerate the creation of transition variations for large coverage or even replace transition nodes in a game's animation graph. The RTN also shows impressive results on a temporal super-resolution task.
Deep Learning recognizes weather and climate patterns
Karthik Kashinath
M. Prabhat
Mayur Mudigonda
Ankur Mahesh
Sookyung Kim
Yunjie Liu
B. Toms
Evan Racah
Christopher Beckham
Jim Biard
K. Kunkel
Dean Nesbit Williams
Travis O'Brien
M. Wehner
W. Collins
A Survey of Mobile Computing for the Visually Impaired
Martin Weiss
Margaux Luck
Roger Girgis
Joseph Paul Cohen
The number of visually impaired or blind (VIB) people in the world is estimated at several hundred million. Based on a series of interviews … (voir plus)with the VIB and developers of assistive technology, this paper provides a survey of machine-learning based mobile applications and identifies the most relevant applications. We discuss the functionality of these apps, how they align with the needs and requirements of the VIB users, and how they can be improved with techniques such as federated learning and model compression. As a result of this study we identify promising future directions of research in mobile perception, micro-navigation, and content-summarization.
Probabilistic Planning with Sequential Monte Carlo methods
Alexandre Piché
Valentin Thomas
Cyril Ibrahim
Focused Hierarchical RNNs for Conditional Sequence Processing
Nan Rosemary Ke
Konrad Żołna
Zhouhan Lin
Adam Trischler
Recurrent Neural Networks (RNNs) with attention mechanisms have obtained state-of-the-art results for many sequence processing tasks. Most o… (voir plus)f these models use a simple form of encoder with attention that looks over the entire sequence and assigns a weight to each token independently. We present a mechanism for focusing RNN encoders for sequence modelling tasks which allows them to attend to key parts of the input as needed. We formulate this using a multi-layer conditional sequence encoder that reads in one token at a time and makes a discrete decision on whether the token is relevant to the context or question being asked. The discrete gating mechanism takes in the context embedding and the current hidden state as inputs and controls information flow into the layer above. We train it using policy gradient methods. We evaluate this method on several types of tasks with different attributes. First, we evaluate the method on synthetic tasks which allow us to evaluate the model for its generalization ability and probe the behavior of the gates in more controlled settings. We then evaluate this approach on large scale Question Answering tasks including the challenging MS MARCO and SearchQA tasks. Our models shows consistent improvements for both tasks over prior work and our baselines. It has also shown to generalize significantly better on synthetic tasks as compared to the baselines.