Portrait de Chris Pal

Chris Pal

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Polytechnique Montréal, Département de génie informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Christopher Pal est titulaire d'une chaire en IA Canada-CIFAR, professeur titulaire à Polytechnique Montréal et professeur adjoint au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il est également chercheur émérite à ServiceNow Research. Il est engagé dans la recherche sur l'intelligence artificielle et l'apprentissage automatique depuis plus de 25 ans, publiant souvent des travaux sur les méthodes de modélisation du langage à grande échelle et les techniques de modélisation générative. Il a obtenu un doctorat en informatique à l'Université de Waterloo.

Étudiants actuels

Collaborateur·rice de recherche - Formerly McGill (but ending)
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - Polytechnique
Doctorat - Polytechnique
Maîtrise recherche - Polytechnique
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - Polytechnique
Doctorat - Polytechnique
Doctorat - École de technologie suprérieure
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - HEC
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Doctorat - UdeM

Publications

Deep Learning for Detecting Extreme Weather Patterns
Mayur Mudigonda
Mayur Mudigonda, Prabhat Ram
Prabhat Ram
Karthik Kashinath
Evan Racah
Ankur Mahesh
Yunjie Liu
Christopher Beckham
Jim Biard
Thorsten Kurth
Sookyung Kim
Burlen Loring
Travis O'Brien
K. Kunkel
Kenneth E. Kunkel
M. Wehner
Michael F. Wehner … (voir 2 de plus)
W. Collins
William D. Collins
Improving Continuous Normalizing Flows using a Multi-Resolution Framework
Vikram Voleti
Chris Finlay
Recent work has shown that Continuous Normalizing Flows (CNFs) can serve as generative models of images with exact likelihood calculation an… (voir plus)d invertible generation/density estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF). We introduce a transformation between resolutions that allows for no change in the log likelihood. We show that this approach yields comparable likelihood values for various image datasets, with improved performance at higher resolutions, with fewer parameters, using only 1 GPU.
Predicting Infectiousness for Proactive Contact Tracing
Prateek Gupta
Nasim Rahaman
Meng Qu
Victor Schmidt
Hannah Alsdurf
gaetan caron
satya ortiz gagne
Bernhard Schölkopf … (voir 3 de plus)
Abhinav Sharma
Andrew Robert Williams
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdo… (voir plus)wns for emergency containment. Large-scale digital contact tracing (DCT) has emerged as a potential solution to resume economic and social activity while minimizing spread of the virus. Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or pre-existing medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). We find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe re-opening and second-wave prevention.
Reinforcement Learning with Random Delays
Simon Ramstedt
Jonathan Binas
Action and observation delays commonly occur in many Reinforcement Learning applications, such as remote control scenarios. We study the ana… (voir plus)tomy of randomly delayed environments, and show that partially resampling trajectory fragments in hindsight allows for off-policy multi-step value estimation. We apply this principle to derive Delay-Correcting Actor-Critic (DCAC), an algorithm based on Soft Actor-Critic with significantly better performance in environments with delays. This is shown theoretically and also demonstrated practically on a delay-augmented version of the MuJoCo continuous control benchmark.
Accounting for Variance in Machine Learning Benchmarks
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (voir plus)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data
Amine El hattami
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MT… (voir plus)L must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer based Hypernetwork Adapter consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets.
Structural Inductive Biases in Emergent Communication
Agnieszka M Slowik
Abhinav Gupta
William L. Hamilton
M. Jamnik
S. Holden
In order to communicate, humans flatten a complex representation of ideas and their attributes into a single word or a sentence. We investig… (voir plus)ate the impact of representation learning in artificial agents by developing graph referential games. We empirically show that agents parametrized by graph neural networks develop a more compositional language compared to bag-of-words and sequence models, which allows them to systematically generalize to new combinations of familiar features.
Bijective-Contrastive Estimation
In this work, we propose Bijective-Contrastive Estimation (BCE), a classification-based learning criterion for energy-based models. We gener… (voir plus)ate a collection of contrasting distributions using bijections, and solve all the classification problems between the original data distribution and the distributions induced by the bijections using a classifier parameterized by an energy model. We show that if the classification objective is minimized, the energy function will uniquely recover the data density up to a normalizing constant. This has the benefit of not having to explicitly specify a contrasting distribution, like noise contrastive estimation. Experimentally, we demonstrate that the proposed method works well on 2D synthetic datasets. We discuss the difficulty in high dimensional cases, and propose potential directions to explore for future work.
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Raymond Li
Sandeep Subramanian
We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarizati… (voir plus)on. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher ROUGE scores. We provide extensive comparisons with strong baseline methods, prior state of the art work as well as multiple variants of our approach including those using only transformers, only extractive techniques and combinations of the two. We examine these models using four different summarization tasks and datasets: arXiv papers, PubMed papers, the Newsroom and BigPatent datasets. We find that transformer based methods produce summaries with fewer n-gram copies, leading to n-gram copying statistics that are more similar to human generated abstracts. We include a human evaluation, finding that transformers are ranked highly for coherence and fluency, but purely extractive methods score higher for informativeness and relevance. We hope that these architectures and experiments may serve as strong points of comparison for future work. Note: The abstract above was collaboratively written by the authors and one of the models presented in this paper based on an earlier draft of this paper.
COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing
Prateek Gupta
Nasim Rahaman
Hannah Alsdurf
Abhinav Sharma
Nanor Minoyan
Soren Harnois-Leblanc
Victor Schmidt
Andrew Robert Williams
Akshay Patel
Meng Qu
gaetan caron
satya ortiz gagne
Marc-Andre Rousseau
Yang Zhang
Bernhard Schölkopf
Joanna Merckx
Learning to Summarize Long Texts with Memory Compression and Transfer