Portrait de Blake Richards

Blake Richards

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique et Département de neurologie et de neurochirurgie
Google
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Modèles génératifs
Neurosciences computationnelles

Biographie

Blake Richards est professeur agrégé à l'École d'informatique et au Département de neurologie et de neurochirurgie de l'Université McGill et membre du corps professoral de Mila – Institut québécois d’intelligence artificielle. Ses recherches se situent à l'intersection des neurosciences et de l'intelligence artificielle. Son laboratoire étudie les principes universels de l'intelligence qui s'appliquent aux agents naturels et artificiels. Il a reçu plusieurs distinctions pour ses travaux, notamment une bourse Arthur-B.-McDonald du Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) en 2022, le Prix du jeune chercheur de l'Association canadienne des neurosciences en 2019 et une chaire en IA Canada-CIFAR en 2018. M. Richards a en outre été titulaire d'une bourse postdoctorale Banting à l'hôpital SickKids de 2011 à 2013. Il a obtenu un doctorat en neurosciences de l'Université d'Oxford en 2010 et une licence en sciences cognitives et en IA de l'Université de Toronto en 2004.

Étudiants actuels

Visiteur de recherche indépendant - Seoul National University
Stagiaire de recherche - McGill
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Postdoctorat - McGill
Stagiaire de recherche - McGill
Visiteur de recherche indépendant - Seoul National University
Baccalauréat - McGill
Collaborateur·rice alumni
Visiteur de recherche indépendant - University of Oregon
Doctorat - McGill
Visiteur de recherche indépendant - ETH Zurich
Collaborateur·rice de recherche - Georgia Tech
Postdoctorat - McGill
Postdoctorat - McGill
Maîtrise recherche - McGill
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Baccalauréat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni
Visiteur de recherche indépendant
Postdoctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - University of Oslo
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Visiteur de recherche indépendant - York University
Doctorat - McGill
Doctorat - Concordia
Superviseur⋅e principal⋅e :

Publications

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
Adam Santoro
Luke Marris
Geoffrey Hinton
Timothy P. Lillicrap
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The recent success of deep networks in machine learn… (voir plus)ing and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.