Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon. Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle et membre du programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond. Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, aux modèles génératifs profonds et à l'apprentissage multimodal avec des applications telles que la vision par ordinateur et le traitement du langage naturel. Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Stagiaire de recherche - Ghent University
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets
Dinghuai Zhang
Hanjun Dai
Nikolay Malkin
Ling Pan
Versatile Energy-Based Probabilistic Models for High Energy Physics
Taoli Cheng
Discovering the Electron Beam Induced Transition Rates for Silicon Dopants in Graphene with Deep Neural Networks in the STEM
Kevin M Roccapriore
Max Schwarzer
Joshua Greaves
Jesse Farebrother
Rishabh Agarwal
Colton Bishop
Maxim Ziatdinov
Igor Mordatch
Ekin Dogus Cubuk
Sergei V Kalinin
Meta-Value Learning: a General Framework for Learning with Learning Awareness
Tim Cooijmans
Milad Aghajohari
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Learning with Learning Awareness using Meta-Values
Tim Cooijmans
Milad Aghajohari
Let the Flows Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets
Dinghuai Zhang
Hanjun Dai
Nikolay Malkin
Ling Pan
Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact algorithms, making them a tempting domain to appl… (voir plus)y machine learning methods. The highly structured constraints in these problems can hinder either optimization or sampling directly in the solution space. On the other hand, GFlowNets have recently emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially and have the potential to amortize such solution-searching processes in CO, as well as generate diverse solution candidates. In this paper, we design Markov decision processes (MDPs) for different combinatorial problems and propose to train conditional GFlowNets to sample from the solution space. Efficient training techniques are also developed to benefit long-range credit assignment. Through extensive experiments on a variety of different CO tasks with synthetic and realistic data, we demonstrate that GFlowNet policies can efficiently find high-quality solutions. Our implementation is open-sourced at https://github.com/zdhNarsil/GFlowNet-CombOpt.
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
Sai Rajeswar
Pietro Mazzaglia
Tim Verbelen
Alexandre Piché
Bart Dhoedt
Alexandre Lacoste
Controlling artificial agents from visual sensory data is an arduous task. Reinforcement learning (RL) algorithms can succeed but require la… (voir plus)rge amounts of interactions between the agent and the environment. To alleviate the issue, unsupervised RL proposes to employ self-supervised interaction and learning, for adapting faster to future tasks. Yet, as shown in the Unsupervised RL Benchmark (URLB; Laskin et al. 2021), whether current unsupervised strategies can improve generalization capabilities is still unclear, especially in visual control settings. In this work, we study the URLB and propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent, and a task-aware fine-tuning strategy combined with a new proposed hybrid planner, Dyna-MPC, to adapt the agent for downstream tasks. On URLB, our method obtains 93.59% overall normalized performance, surpassing previous baselines by a staggering margin. The approach is empirically evaluated through a large-scale empirical study, which we use to validate our design choices and analyze our models. We also show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation. Project website: https://masteringurlb.github.io/
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
Sai Rajeswar
Pietro Mazzaglia
Tim Verbelen
Alexandre Piché
Bart Dhoedt
Alexandre Lacoste
Generative Augmented Flow Networks
Ling Pan
Dinghuai Zhang
Longbo Huang
The Generative Flow Network is a probabilistic framework where an agent learns a stochastic policy for object generation, such that the prob… (voir plus)ability of generating an object is proportional to a given reward function. Its effectiveness has been shown in discovering high-quality and diverse solutions, compared to reward-maximizing reinforcement learning-based methods. Nonetheless, GFlowNets only learn from rewards of the terminal states, which can limit its applicability. Indeed, intermediate rewards play a critical role in learning, for example from intrinsic motivation to provide intermediate feedback even in particularly challenging sparse reward tasks. Inspired by this, we propose Generative Augmented Flow Networks (GAFlowNets), a novel learning framework to incorporate intermediate rewards into GFlowNets. We specify intermediate rewards by intrinsic motivation to tackle the exploration problem in sparse reward environments. GAFlowNets can leverage edge-based and state-based intrinsic rewards in a joint way to improve exploration. Based on extensive experiments on the GridWorld task, we demonstrate the effectiveness and efficiency of GAFlowNet in terms of convergence, performance, and diversity of solutions. We further show that GAFlowNet is scalable to a more complex and large-scale molecule generation domain, where it achieves consistent and significant performance improvement.
Investigating Multi-task Pretraining and Generalization in Reinforcement Learning
Adrien Ali Taiga
Rishabh Agarwal
Jesse Farebrother
Google Brain
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Dinghuai Zhang
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen