Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS
Kyle Kastner
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Pradeep Ravikumar
Arun Sai Suggala
In the context of adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attac… (voir plus)ks, and as a result, has sub-optimal robustness. Consequently, an emerging line of work has focused on learning an ensemble of neural networks to defend against adversarial attacks. In this work, we take a principled approach towards building robust ensembles. We view this problem from the perspective of margin-boosting and develop an algorithm for learning an ensemble with maximum margin. Through extensive empirical evaluation on benchmark datasets, we show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion. An important byproduct of our work is a margin-maximizing cross-entropy (MCE) loss, which is a better alternative to the standard cross-entropy (CE) loss. Empirically, we show that replacing the CE loss in state-of-the-art adversarial training techniques with our MCE loss leads to significant performance improvement.
Generative Flow Networks for Discrete Probabilistic Modeling
Dinghuai Zhang
Nikolay Malkin
Zhen Liu
Alexandra Volokhova
We present energy-based generative flow networks (EB-GFN), a novel probabilistic modeling algorithm for high-dimensional discrete data. Buil… (voir plus)ding upon the theory of generative flow networks (GFlowNets), we model the generation process by a stochastic data construction policy and thus amortize expensive MCMC exploration into a fixed number of actions sampled from a GFlowNet. We show how GFlowNets can approximately perform large-block Gibbs sampling to mix between modes. We propose a framework to jointly train a GFlowNet with an energy function, so that the GFlowNet learns to sample from the energy distribution, while the energy learns with an approximate MLE objective with negative samples from the GFlowNet. We demonstrate EB-GFN's effectiveness on various probabilistic modeling tasks. Code is publicly available at https://github.com/zdhNarsil/EB_GFN.
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
Pierluca D'Oro
VIM: Variational Independent Modules for Video Prediction
Rim Assouel
Lluis Castrejon
Nicolas Ballas
We introduce a variational inference model called VIM, for Variational Independent Modules, for sequential data that learns and infers laten… (voir plus)t representations as a set of objects and discovers modular causal mechanisms over these objects. These mechanisms - which we call modules - are independently parametrized, define the stochastic transitions of entities and are shared across entities. At each time step, our model infers from a low-level input sequence a high-level sequence of categorical latent variables to select which transition modules to apply to which high-level object. We evaluate this model in video prediction tasks where the goal is to predict multi-modal future events given previous observations. We demonstrate empirically that VIM can model 2D visual sequences in an interpretable way and is able to identify the underlying dynamically instantiated mechanisms of the generation process. We additionally show that the learnt modules can be composed at test time to generalize to out-of-distribution observations.
Multi-label Iterated Learning for Image Classification with Label Ambiguity
Sai Rajeswar
Pau Rodriguez
Soumye Singhal
David Vazquez
Transfer learning from large-scale pre-trained models has become essential for many computer vision tasks. Recent studies have shown that da… (voir plus)tasets like ImageNet are weakly labeled since images with multiple object classes present are assigned a single label. This ambiguity biases models towards a single prediction, which could result in the suppression of classes that tend to co-occur in the data. Inspired by language emergence literature, we propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels using the framework of iterated learning. MILe is a simple yet effective procedure that builds a multi-label description of the image by propagating binary predictions through successive generations of teacher and student networks with a learning bottleneck. Experiments show that our approach exhibits systematic benefits on ImageNet accuracy as well as ReaL F1 score, which indicates that MILe deals better with label ambiguity than the standard training procedure, even when fine-tuning from self-supervised weights. We also show that MILe is effective reducing label noise, achieving state-of-the-art performance on real-world large-scale noisy data such as WebVision. Furthermore, MILe improves performance in class incremental settings such as IIRC and it is robust to distribution shifts. Code: https://github.com/rajeswar18/MILe
Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels
Sai Rajeswar
Pietro Mazzaglia
Tim Verbelen
Alexandre Piché
Bart Dhoedt
Alexandre Lacoste
Reinforcement learning (RL) aims at autonomously performing complex tasks. To this end, a reward signal is used to steer the learning proces… (voir plus)s. While successful in many circumstances, the approach is typically data hungry, requiring large amounts of task-specific interaction between agent and environment to learn efficient behaviors. To alleviate this, unsupervised RL proposes to collect data through self-supervised interaction to accelerate task-specific adaptation. However, whether current unsupervised strategies lead to improved generalization capabilities is still unclear, more so when the input observations are high-dimensional. In this work, we advance the field by closing the performance gap in the Unsupervised RL Benchmark, a collection of tasks to be solved in a data-efficient manner, after interacting with the environment in a self-supervised way. Our approach uses unsupervised exploration for collecting experience to pre-train a world model. Then, when fine-tuning for downstream tasks, the agent leverages the learned model and a hybrid planner to efficiently adapt for the given tasks, achieving comparable results to task-specific base-lines, while using 20x less data. We extensively evaluate our work, comparing several exploration methods and improving the fine-tuning process by studying the interactions between the learned components. Furthermore, we investigate the limitations of the pre-trained agent, gaining insights into how these influence the decision process and shedding light on new research directions.
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Unsupervised Dependency Graph Network
Yikang Shen
Shawn Tan
Peng Li
Jie Zhou
I NTRODUCING C OORDINATION IN C ONCURRENT R EIN - FORCEMENT L EARNING
Adrien Ali Taiga
Google Brain
Research on exploration in reinforcement learning has mostly focused on problems with a single agent interacting with an environment. Howeve… (voir plus)r many problems are better addressed by the concurrent reinforcement learning paradigm, where multiple agents operate in a common environment. Recent work has tackled the challenge of exploration in this particular setting (Dimakopoulou & Van Roy, 2018; Dimakopoulou et al., 2018). Nonetheless, they do not completely leverage the characteristics of this framework and agents end up behaving independently from each other. In this work we argue that coordination among concurrent agents is crucial for efficient exploration. We introduce coordination in Thompson Sampling based methods by drawing correlated samples from an agent’s posterior. We apply this idea to extend existing exploration schemes such as randomized least squares value iteration (RLSVI). Empirical results on simple toy tasks emphasize the merits of our approach and call attention to coordination as a key objective for efficient exploration in concurrent reinforcement learning.
INFERNO: Inferring Object-Centric 3D Scene Representations without Supervision
Lluis Castrejon
Nicolas Ballas
We propose INFERNO, a method to infer object-centric representations of visual scenes without annotations. Our method decomposes a scene int… (voir plus)o multiple objects, with each object having a structured representation that disentangles its shape, appearance and pose. Each object representation defines a localized neural radiance field used to generate 2D views of the scene through differentiable rendering. Our model is subsequently trained by minimizing a reconstruction loss between inputs and corresponding rendered scenes. We empirically show that INFERNO discovers objects in a scene without supervision. We also validate the interpretability of the learned representations by manipulating inferred scenes and showing the corresponding effect in the rendered output. Finally, we demonstrate the usefulness of our 3D object representations in a visual reasoning task using the CATER dataset.