Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon. Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle et membre du programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond. Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, aux modèles génératifs profonds et à l'apprentissage multimodal avec des applications telles que la vision par ordinateur et le traitement du langage naturel. Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Stagiaire de recherche - Ghent University
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Online black-box adaptation to label-shift in the presence of conditional-shift
Faruk Ahmed
We consider an out-of-distribution setting where trained predictive models are deployed online in new locations (inducing conditional-shift)… (voir plus), such that these locations are also associated with differently skewed target distributions (label-shift). While approaches for online adaptation to label-shift have recently been discussed by Wu et al. (2021), the potential presence of concurrent conditional-shift has not been considered in the literature, although one might anticipate such distributional shifts in realistic deployments. In this paper, we empirically explore the effectiveness of online adaptation methods in such situations on three synthetic and two realistic datasets, comprising both classification and regression problems. We show that it is possible to improve performance in these settings by learning additional hyper-parameters to account for the presence of conditional-shift by using appropriate validation sets.
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier
Pierluca D'Oro
Max Schwarzer
Evgenii Nikishin
Increasing the replay ratio, the number of updates of an agent's parameters per environment interaction, is an appealing strategy for improv… (voir plus)ing the sample efficiency of deep reinforcement learning algorithms. In this work, we show that fully or partially resetting the parameters of deep reinforcement learning agents causes better replay ratio scaling capabilities to emerge. We push the limits of the sample efficiency of carefully-modified algorithms by training them using an order of magnitude more updates than usual, significantly improving their performance in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an analysis of the design choices required for favorable replay ratio scaling to be possible and discuss inherent limits and tradeoffs.
Simplicial Embeddings in Self-Supervised Learning and Downstream Classification
Samuel Lavoie
Christos Tsirigotis
Max Schwarzer
Kenji Kawaguchi
Ankit Vani
Michael Noukhovitch
Simplicial Embeddings (SEM) are representations learned through self-supervised learning (SSL), wherein a representation is projected into …
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Noisy Pairing and Partial Supervision for Stylized Opinion Summarization
Reinald Kim
Mirella Lapata. 2020
Un-611
Emmanuel Bengio
Maxinder S. Kan-620
Asja Fischer
Somnath Basu
Roy Chowdhury
Chao Zhao
Tanya Goyal
Junyi Jiacheng Xu
Jessy Li
Ivor Wai-hung Tsang
James T. Kwok
Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzębski … (voir 22 de plus)
Bruna Morrone
Quentin de Laroussilhe
Mona Gesmundo
Attariyan Sylvain
Gelly
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Funtow-900 Joe
Sam Davison
Patrick Shleifer
Von Platen
Clara Ma
Yacine Jernite
Julien Plu
Canwen Xu
Opinion summarization research has primar-001 ily focused on generating summaries reflect-002 ing important opinions from customer reviews 0… (voir plus)03 without paying much attention to the writing 004 style. In this paper, we propose the stylized 005 opinion summarization task, which aims to 006 generate a summary of customer reviews in 007 the desired (e.g., professional) writing style. 008 To tackle the difficulty in collecting customer 009 and professional review pairs, we develop a 010 non-parallel training framework, Noisy Pair-011 ing and Partial Supervision ( NAPA ), which 012 trains a stylized opinion summarization sys-013 tem from non-parallel customer and profes-014 sional review sets. We create a benchmark P RO - 015 S UM by collecting customer and professional 016 reviews from Yelp and Michelin. Experimental 017 results on P RO S UM and FewSum demonstrate 018 that our non-parallel training framework con-019 sistently improves both automatic and human 020 evaluations, successfully building a stylized 021 opinion summarization model that can gener-022 ate professionally-written summaries from cus-023 tomer reviews. 024
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Versatile Energy-Based Models for High Energy Physics
Taoli Cheng
Teaching Algorithmic Reasoning via In-context Learning
Hattie Zhou
Azade Nova
Behnam Neyshabur
Hanie Sedghi
Invariant representation driven neural classifier for anti-QCD jet tagging
Taoli Cheng
VIM: Variational Independent Modules for Video Prediction
Rim Assouel
Lluis Castrejon
Nicolas Ballas
We introduce a variational inference model called VIM, for Variational Independent Modules, for sequential data that learns and infers laten… (voir plus)t representations as a set of objects and discovers modular causal mechanisms over these objects. These mechanisms - which we call modules - are independently parametrized, define the stochastic transitions of entities and are shared across entities. At each time step, our model infers from a low-level input sequence a high-level sequence of categorical latent variables to select which transition modules to apply to which high-level object. We evaluate this model in video prediction tasks where the goal is to predict multi-modal future events given previous observations. We demonstrate empirically that VIM can model 2D visual sequences in an interpretable way and is able to identify the underlying dynamically instantiated mechanisms of the generation process. We additionally show that the learnt modules can be composed at test time to generalize to out-of-distribution observations.
Multi-label Iterated Learning for Image Classification with Label Ambiguity
Sai Rajeswar
Pau Rodriguez
Soumye Singhal
David Vazquez
Transfer learning from large-scale pre-trained models has become essential for many computer vision tasks. Recent studies have shown that da… (voir plus)tasets like ImageNet are weakly labeled since images with multiple object classes present are assigned a single label. This ambiguity biases models towards a single prediction, which could result in the suppression of classes that tend to co-occur in the data. Inspired by language emergence literature, we propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels using the framework of iterated learning. MILe is a simple yet effective procedure that builds a multi-label description of the image by propagating binary predictions through successive generations of teacher and student networks with a learning bottleneck. Experiments show that our approach exhibits systematic benefits on ImageNet accuracy as well as ReaL F1 score, which indicates that MILe deals better with label ambiguity than the standard training procedure, even when fine-tuning from self-supervised weights. We also show that MILe is effective reducing label noise, achieving state-of-the-art performance on real-world large-scale noisy data such as WebVision. Furthermore, MILe improves performance in class incremental settings such as IIRC and it is robust to distribution shifts. Code: https://github.com/rajeswar18/MILe