Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Modèles génératifs
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon. Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle et membre du programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond. Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, aux modèles génératifs profonds et à l'apprentissage multimodal avec des applications telles que la vision par ordinateur et le traitement du langage naturel. Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Stagiaire de recherche - Ghent University
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky T. Q. Chen
Cheng-Hao Liu
LOQA: Learning with Opponent Q-Learning Awareness
Milad Aghajohari
Juan Agustin Duque
Tim Cooijmans
In various real-world scenarios, interactions among agents often resemble the dynamics of general-sum games, where each agent strives to opt… (voir plus)imize its own utility. Despite the ubiquitous relevance of such settings, decentralized machine learning algorithms have struggled to find equilibria that maximize individual utility while preserving social welfare. In this paper we introduce Learning with Opponent Q-Learning Awareness (LOQA) , a novel reinforcement learning algorithm tailored to optimizing an agent's individual utility while fostering cooperation among adversaries in partially competitive environments. LOQA assumes that each agent samples actions proportionally to their action-value function Q. Experimental results demonstrate the effectiveness of LOQA at achieving state-of-the-art performance in benchmark scenarios such as the Iterated Prisoner's Dilemma and the Coin Game. LOQA achieves these outcomes with a significantly reduced computational footprint compared to previous works, making it a promising approach for practical multi-agent applications.
The Curse of Diversity in Ensemble-Based Exploration
Zhixuan Lin
Pierluca D'Oro
Evgenii Nikishin
We uncover a surprising phenomenon in deep reinforcement learning: training a diverse ensemble of data-sharing agents -- a well-established … (voir plus)exploration strategy -- can significantly impair the performance of the individual ensemble members when compared to standard single-agent training. Through careful analysis, we attribute the degradation in performance to the low proportion of self-generated data in the shared training data for each ensemble member, as well as the inefficiency of the individual ensemble members to learn from such highly off-policy data. We thus name this phenomenon *the curse of diversity*. We find that several intuitive solutions -- such as a larger replay buffer or a smaller ensemble size -- either fail to consistently mitigate the performance loss or undermine the advantages of ensembling. Finally, we demonstrate the potential of representation learning to counteract the curse of diversity with a novel method named Cross-Ensemble Representation Learning (CERL) in both discrete and continuous control domains. Our work offers valuable insights into an unexpected pitfall in ensemble-based exploration and raises important caveats for future applications of similar approaches.
In deep reinforcement learning, a pruned network is a good network
Johan Samir Obando Ceron
Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage pri… (voir plus)or insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks and exhibit a type of"scaling law", using only a small fraction of the full network parameters.
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Ekin Dogus Cubuk
Rishabh Agarwal
Sergei V. Kalinin
Igor Mordatch
Kevin M Roccapriore
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimu… (voir plus)lated by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities. These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Learning Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Kevin Roccapriore
Ekin Dogus Cubuk
Rishabh Agarwal
Sergei Kalinin
Igor Mordatch
We introduce a machine learning approach to determine the transition rates of silicon atoms on a single layer of carbon atoms, when stimulat… (voir plus)ed by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition rates. These rates are then applied to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Learning Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Kevin Roccapriore
Ekin Dogus Cubuk
Rishabh Agarwal
Sergei Kalinin
Igor Mordatch
We introduce a machine learning approach to determine the transition rates of silicon atoms on a single layer of carbon atoms, when stimulat… (voir plus)ed by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition rates. These rates are then applied to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Sparse Universal Transformer
Shawn Tan
Yikang Shen
Zhenfang Chen
Chuang Gan
The Universal Transformer (UT) is a variant of the Transformer that shares parameters across its layers and is Turing-complete under certain… (voir plus) assumptions. Empirical evidence also shows that UTs have better compositional generalization than Vanilla Transformers (VTs) in formal language tasks. The parameter-sharing also affords it better parameter efficiency than VTs. Despite its many advantages, most state-of-the-art NLP systems use VTs as their backbone model instead of UTs. This is mainly because scaling UT parameters is more compute and memory intensive than scaling up a VT. This paper proposes the Sparse Universal Transformer (SUT), which leverages Sparse Mixture of Experts (SMoE) to reduce UT's computation complexity while retaining its parameter efficiency and generalization ability. Experiments show that SUT combines the best of both worlds, achieving strong generalization results on formal language tasks (Logical inference and CFQ) and impressive parameter and computation efficiency on standard natural language benchmarks like WMT'14.
Double Gumbel Q-Learning.
David Yu-Tung Hui
Group Robust Classification Without Any Group Information
Christos Tsirigotis
Joao Monteiro
Pau Rodriguez
David Vazquez
Improving Compositional Generalization using Iterated Learning and Simplicial Embeddings
Yi Ren
Samuel Lavoie
Mikhail Galkin
Danica J. Sutherland
Language Model Alignment with Elastic Reset
Michael Noukhovitch
Samuel Lavoie
Florian Strub
Finetuning language models with reinforcement learning (RL), e.g. from human feedback (HF), is a prominent method for alignment. But optimiz… (voir plus)ing against a reward model can improve on reward while degrading performance in other areas, a phenomenon known as reward hacking, alignment tax, or language drift. First, we argue that commonly-used test metrics are insufficient and instead measure how different algorithms tradeoff between reward and drift. The standard method modified the reward with a Kullback-Lieber (KL) penalty between the online and initial model. We propose Elastic Reset, a new algorithm that achieves higher reward with less drift without explicitly modifying the training objective. We periodically reset the online model to an exponentially moving average (EMA) of itself, then reset the EMA model to the initial model. Through the use of an EMA, our model recovers quickly after resets and achieves higher reward with less drift in the same number of steps. We demonstrate that fine-tuning language models with Elastic Reset leads to state-of-the-art performance on a small scale pivot-translation benchmark, outperforms all baselines in a medium-scale RLHF-like IMDB mock sentiment task and leads to a more performant and more aligned technical QA chatbot with LLaMA-7B. Code available at github.com/mnoukhov/elastic-reset.